Advance Search
Zhang P,Han B,Ding P,Zhu JJ. An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis[J]. Plant Science Journal,2023,41(5):687−693. DOI: 10.11913/PSJ.2095-0837.23009
Citation: Zhang P,Han B,Ding P,Zhu JJ. An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis[J]. Plant Science Journal,2023,41(5):687−693. DOI: 10.11913/PSJ.2095-0837.23009

An approach to quantify the free water content in leaves of Quercus acutissima Carruth. with differential thermal analysis

Funds: This work was supported by grants from the National Natural Science Foundation of China (31870376) and Provincial Engineering Project of Shandong for Elite Agricultural Varieties (2019LZGC01805).
More Information
  • Received Date: January 11, 2023
  • Revised Date: January 31, 2023
  • Available Online: March 13, 2023
  • An approach was devised to quantify free water content in the leaves of sawtooth oak (Quercus acutissima Carruth.) under different states using differential thermal analysis. The freezing temperatures, peak heights of the exotherms and the areas under the exotherms were clearly observed in the time-domain scanning curve of the differential thermal analysis during cooling, while the larger areas under the exotherms were seen in the temperature-domain scanning curve of the differential thermal analysis, providing a higher sensitivity in quantifying the free water content in the samples. The boundary between free and bound water in the tissues was (−8.23 ± 0.21) MPa, close to the osmotic potential of a 2 mol/kg NaCl solution (−8.71 MPa). Freeze-killed leaves demonstrated uniform solution freezing features with sharp, narrow peaks and higher peak values (1.91 times that of living leaves) attributed to rapid temperature changes. In living leaves, the peaks were broader, and values were lower, suggesting notable delays in water phase change within cellular membranes. Thus, differential thermal analysis could effectively determine the phase change parameters of free water in plant tissues during freeze-thaw cycles and quantify the free water content in plant tissues.

  • [1]
    Londo JP,Kovaleski AP. Characterization of wild north American grapevine cold hardiness using differential thermal analysis[J]. Am J Enol Vitic,2017,68 (2):203−212. doi: 10.5344/ajev.2016.16090
    [2]
    Smykatz-Kloss W. Differential Thermal Analysis: Application and Results in Mineralogy[M]. Berlin: Springer, 1974: 15-44.
    [3]
    Vold MJ. Differential thermal analysis[J]. Anal Chem,1949,21 (6):683−688. doi: 10.1021/ac60030a011
    [4]
    Palta JP,Whitaker BD,Weiss LS. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of solanum species[J]. Plant Physiol,1993,103 (3):793−803. doi: 10.1104/pp.103.3.793
    [5]
    Pearce RS. Molecular analysis of acclimation to cold[J]. Plant Growth Regul,1999,29 (1):47−76.
    [6]
    Gaburjakova J,Gaburjakova M. Reconstitution of ion channels in planar lipid bilayers:new approaches[J]. Adv Biomembr Lipid Self-Assem,2018,27:147−185.
    [7]
    文彬. 植物种质资源超低温保存概述[J]. 植物分类与资源学报,2011,33(3):311−329.

    Wen B. An introduction to cryopreservation of plant germplasm[J]. Plant Diversity and Resources,2011,33 (3):311−329.
    [8]
    Gao Z,Li J,Zhu HP,Sun LL,Du YP,Zhai H. Using differential thermal analysis to analyze cold hardiness in the roots of grape varieties[J]. Sci Hortic,2014,174:155−163. doi: 10.1016/j.scienta.2014.05.002
    [9]
    Kuprian E,Briceño VF,Wagner J,Gilbert N. Ice barriers promote supercooling and prevent frost injury in reproductive buds,flowers and fruits of alpine dwarf shrubs throughout the summer[J]. Environ Exp Bot,2014,106:4−12. doi: 10.1016/j.envexpbot.2014.01.011
    [10]
    陈仁伟,张晓煜,丁琦,杨豫,南学军,等. 基于差热分析技术的4个酿酒葡萄品种不同部位抗寒性综合评价[J]. 中国生态农业学报,2020,28(7):1022−1032. doi: 10.13930/j.cnki.cjea.200151

    Chen RW,Zhang XY,Ding Q,Yang Y,Nan XJ,et al. Comprehensive evaluation of cold resistance in different parts of four wine grape varieties based on different thermal analysis[J]. Chinese Journal of Eco-Agriculture,2020,28 (7):1022−1032. doi: 10.13930/j.cnki.cjea.200151
    [11]
    Malyshev AV, Beil I, Kreyling J. Differential thermal analysis: a fast alternative to frost tolerance measurements[M]//Hincha DK, Zuther E, eds. Plant Cold Acclimation: Methods and Protocols. New York: Humana, 2020: 23-31.
    [12]
    Kaya O,Kose C. How sensitive are the flower parts of the sweet cherry in sub-zero temperatures? Use of differential thermal analysis and critical temperatures assessment[J]. New Zeal J Crop Hort,2022,50 (1):17−31. doi: 10.1080/01140671.2021.1890156
    [13]
    Kaya O,Kose C,Sahin M. The use of differential thermal analysis in determining the critical temperatures of sweet cherry (Prunus avium L. ) flower buds at different stages of bud burst[J]. Int J Biometeorol,2021,65 (7):1125−1135. doi: 10.1007/s00484-021-02093-1
    [14]
    于瑞凤,朱建军. 女贞和冬青卫矛叶片低温下胞外结冰模式的热力学新证据[J]. 植物学报,2018,53(2):203−211.

    Yu RF,Zhu JJ. New evidence for the mode of extracellular freezing in leaves of Ligustrum lucidum and Euonymus japonicus under low temperatures[J]. Chinese Bulletin of Botany,2018,53 (2):203−211.
    [15]
    Rajashekar CB,Burke MJ. Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing)[J]. Plant Physiol,1996,111 (2):597−603. doi: 10.1104/pp.111.2.597
    [16]
    Zhu JJ,Beck E. Water relations of Pachysandra leaves during freezing and thawing:evidence for a negative pressure potential alleviating freeze-dehydration stress[J]. Plant Physiol,1991,97 (3):1146−1153. doi: 10.1104/pp.97.3.1146
    [17]
    Hacker J,Neuner G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA)[J]. Tree Physiol,2007,27 (12):1661−1670. doi: 10.1093/treephys/27.12.1661
    [18]
    Cameron IL,Hunter KE,Ord VA,Fullerton GD. Relationships between ice crystal size,water content and proton NMR relaxation times in cells[J]. Physiol Chem Phys Med NMR,1985,17 (4):371−386.
    [19]
    Hansen J,Beck E. Evidence for ideal and non-ideal equilibrium freezing of leaf water in frosthardy ivy (Hedera helix) and winter barley (Hordeum vulgare)[J]. Bot Acta,1988,101 (1):76−82. doi: 10.1111/j.1438-8677.1988.tb00014.x
    [20]
    Pukacka S,Hoffmann SK,Goslar J,Pukacki PM,Wójkiewicz E. Water and lipid relations in beech (Fagus sylvatica L. ) seeds and its effect on storage behaviour[J]. Biochim Biophys Acta (BBA)-Gen Subj,2003,1621 (1):48−56. doi: 10.1016/S0304-4165(03)00046-1
  • Related Articles

    [1]Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282
    [2]Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140
    [3]Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152
    [4]Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
    [5]ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487
    [6]CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394
    [7]SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346.
    [8]CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353
    [9]He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588.
    [10]CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266.
  • Cited by

    Periodical cited type(3)

    1. 贺文琪,柴国柱,薛矗,山晓丹,兰小中. 西藏11种菊科药用植物染色体核型研究. 种子. 2025(02): 190-201 .
    2. 李璨,刘庆龙,尤丽梅,林乙明,陈世品. 福建野生水生植物区系特征研究. 中国野生植物资源. 2025(03): 128-134 .
    3. 马启奥,孙楷,王宏超,李利平,李颖,李晓琳,程蒙,杨光,池秀莲. 高黎贡山区域中药材药性的组成特征及垂直格局. 中国现代中药. 2024(11): 1833-1842 .

    Other cited types(5)

Catalog

    Article views (205) PDF downloads (32) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return