Advance Search
Wan JM,Qi JS,Li TZ,Zhang LY,Tian M. Impact of leaf absorption of atmospheric heavy metals on plants: a review[J]. Plant Science Journal,2023,41(5):694−704. DOI: 10.11913/PSJ.2095-0837.23012
Citation: Wan JM,Qi JS,Li TZ,Zhang LY,Tian M. Impact of leaf absorption of atmospheric heavy metals on plants: a review[J]. Plant Science Journal,2023,41(5):694−704. DOI: 10.11913/PSJ.2095-0837.23012

Impact of leaf absorption of atmospheric heavy metals on plants: a review

Funds: This work was supported by grants from the Chongqing Natural Science Foundation Project (CSTB2022NSCQ-MSX0818), Chongqing Municipal Education Commission Science and Technology Plan Project (KJQN202101201), and Open Fund Project of Chongqing Key Laboratory of Water Environment Evolution and Pollution Prevention in Three Gorges Reservoir Area (WEPKL2018YB-01).
More Information
  • Received Date: December 24, 2022
  • Revised Date: February 22, 2023
  • Available Online: March 13, 2023
  • Fossil fuel combustion, vehicle exhaust emissions, metallurgical industry emissions, and mining activities discharge significant amounts of heavy metals into the atmosphere. This has intensified heavy metal pollution, posing serious threats to the environmental quality of soil, water, and plants. After dry and wet deposition from the atmosphere, these heavy metals participate in plant biochemical cycles. While root-based heavy metal uptake is well-documented, the mechanisms and impact of heavy metal absorption by leaves remain poorly studied. This paper summarizes previous work, offering a systematic review of the mechanisms governing plant leaf absorption and transport of atmospheric heavy metals. Plant leaves primarily absorb heavy metals through their stomata and cuticles, with subsequent transport to the phloem through the apoplast or symplast pathway, and final deposition in the leaves, fruits, roots, and other organs, similar to photosynthetic products. Morphological changes in heavy metals in the plant are associated with absorption and transport processes. Toxicity mechanisms primarily involve mechanical damage, inhibition of photosynthesis-related processes, and oxidative stress. Detoxification mechanisms in plants include retention within the cell walls, sequestration in the soluble parts of plants, and defense by the antioxidant system.

  • [1]
    Tian HZ,Zhu CY,Gao JJ,Cheng K,Hao JM,et al. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China:historical trend,spatial distribution,uncertainties,and control policies[J]. Atmos Chem Phys,2015,15 (17):10127−10147. doi: 10.5194/acp-15-10127-2015
    [2]
    陈其永,郜允兵,倪润祥,潘瑜春,阎跃观,等. 2000-2018 年我国大气重金属沉降通量时空变化特征[J]. 环境科学,2022,43(9):4413−4424.

    Chen QY,Gao YB,Ni RX,Pan YC,Yan YG,et al. Temporal and spatial variation characteristics of heavy metal in atmospheric deposition in China from 2000 to 2018[J]. Environmental Science,2022,43 (9):4413−4424.
    [3]
    王鑫,刘冬跃,钱松山,王新,崔文超,马宁. 大气沉降对环境污染研究现状及进展[J]. 北京水务,2021(2):16−20. doi: 10.19671/j.1673-4637.2021.02.004

    Wang X,Liu DY,Qian SS,Wang X,Cui WC,Ma N. Research progress of atmospheric deposition on environmental pollution[J]. Beijing Water,2021 (2):16−20. doi: 10.19671/j.1673-4637.2021.02.004
    [4]
    Guo LC,Bao LJ,She JW,Zeng EY. Significance of wet deposition to removal of atmospheric particulate matter and polycyclic aromatic hydrocarbons:a case study in Guangzhou,China[J]. Atmos Environ,2014,83:136−144. doi: 10.1016/j.atmosenv.2013.11.012
    [5]
    Liu JK,Zhu LJ,Wang HH,Yang YL,Liu JT,et al. Dry deposition of particulate matter at an urban forest,wetland and lake surface in Beijing[J]. Atmospheric Environ,2016,125:178−187. doi: 10.1016/j.atmosenv.2015.11.023
    [6]
    Zhu JX,Wang QF,Yu HL,Li ML,He NP. Heavy metal deposition through rainfall in Chinese natural terrestrial ecosystems:evidences from national-scale network monitoring[J]. Chemosphere,2016,164:128−133. doi: 10.1016/j.chemosphere.2016.08.105
    [7]
    Mcdonald AG,Bealey WJ,Fowler D,Dragosits U,Skiba U,et al. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations[J]. Atmos Environ,2007,41 (38):8455−8467. doi: 10.1016/j.atmosenv.2007.07.025
    [8]
    Shao F,Wang LH,Sun FB,Li G,Yu L,et al. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou,China[J]. Sci Total Environ,2019,652:939−951. doi: 10.1016/j.scitotenv.2018.10.182
    [9]
    Schreck E,Dappe V,Sarret G,Sobanska S,Nowak D,et al. Foliar or root exposures to smelter particles:consequences for lead compartmentalization and speciation in plant leaves[J]. Sci Total Environ,2014,476-477:667−676. doi: 10.1016/j.scitotenv.2013.12.089
    [10]
    Kováčik J,Klejdus B,Štork F,Hedbavny J. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application[J]. J Hazardous Mater,2012,239-240:175−182. doi: 10.1016/j.jhazmat.2012.08.062
    [11]
    Xiong TT,Dumat C,Dappe V,Vezin H,Schreck E,et al. Copper oxide nanoparticle foliar uptake,phytotoxicity,and consequences for sustainable urban agriculture[J]. Environ Sci Technol,2017,51 (9):5242−5251. doi: 10.1021/acs.est.6b05546
    [12]
    Natasha,Shahid M,Khalid S. Foliar application of lead and arsenic solutions to Spinacia oleracea:biophysiochemical analysis and risk assessment[J]. Environ Sci Pollut Res Int,2020,27 (32):39763−39773. doi: 10.1007/s11356-019-06519-7
    [13]
    Steingräber LF,Ludolphy C,Metz J,Kierdorf H,Kierdorf U. Uptake of lead and zinc from soil by blackberry plants (Rubus fruticosus L. agg. ) and translocation from roots to leaves[J]. Environ Adv,2022,9:100313. doi: 10.1016/j.envadv.2022.100313
    [14]
    Rahman SU,Nawaz MF,Gul S,Yasin G,Hussain B,et al. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants:a review[J]. Ecotoxicol Environ Saf,2022,242:113952. doi: 10.1016/j.ecoenv.2022.113952
    [15]
    Noor I, Sohail H, Sun JX, Nawaz MA, Li GH, et al. Heavy metal and metalloid toxicity in horticultural plants: tolerance mechanism and remediation strategies[J]. Chemosphere, 2022, 303(Pt 3): 135196.
    [16]
    Feng WL,Guo ZH,Xiao XY,Peng C,Shi L,et al. Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment[J]. Ecotoxicol Environ Saf,2019,180:160−167. doi: 10.1016/j.ecoenv.2019.04.090
    [17]
    Liu HL,Zhou J,Li M,Obrist D,Wang XZ,Zhou J. Chemical speciation of trace metals in atmospheric deposition and impacts on soil geochemistry and vegetable bioaccumulation near a large copper smelter in China[J]. J Hazard Mater,2021,413:125346. doi: 10.1016/j.jhazmat.2021.125346
    [18]
    朱臻,杨相东,徐章倩,费讲驰,彭建伟,等. 农作物叶片对大气沉降重金属的吸收转运和积累机制[J]. 植物营养与肥料学报,2021,27(2):332−345. doi: 10.11674/zwyf.20258

    Zhu Z,Yang XD,Xu ZQ,Fei JC,Peng JW,et al. Foliar uptake,translocation and accumulation of heavy metals from atmospheric deposition in crops[J]. Journal of Plant Nutrition and Fertilizers,2021,27 (2):332−345. doi: 10.11674/zwyf.20258
    [19]
    Shahid M,Dumat C,Khalid S,Schreck E,Xiong TT,Niazi NK. Foliar heavy metal uptake,toxicity and detoxification in plants:a comparison of foliar and root metal uptake[J]. J Hazard Mater,2017,325:36−58. doi: 10.1016/j.jhazmat.2016.11.063
    [20]
    De Temmerman L,Waegeneers N,Claeys N,Roekens E. Comparison of concentrations of mercury in ambient air to its accumulation by leafy vegetables:an important step in terrestrial food chain analysis[J]. Environ Pollut,2009,157 (4):1337−1341. doi: 10.1016/j.envpol.2008.11.035
    [21]
    刘辰明,张志强,陈立欣,邹瑞,张璐,等. 降雨对北方城市5种典型城市绿化树种叶面滞尘的影响[J]. 生态学报,2018,38(7):2353−2361.

    Liu CM,Zhang ZQ,Chen LX,Zou R,Zhang L,et al. Impacts of rainfall on leaf PM (airborne particulate matter) detention in five commonly used urban tree species in northern China[J]. Acta Ecologica Sinica,2018,38 (7):2353−2361.
    [22]
    查燕. 气象因子对城市植物叶面颗粒物的影响研究[J]. 安徽农业科学,2015,43(20):246−248. doi: 10.13989/j.cnki.0517-6611.2015.20.088

    Zha Y. Research on the effect of meteorological factors on urban plant foliar particulate matter[J]. Journal of Anhui Agricultural Sciences,2015,43 (20):246−248. doi: 10.13989/j.cnki.0517-6611.2015.20.088
    [23]
    Kinnersley RP,Scott LK. Aerial contamination of fruit through wet deposition and particulate dry deposition[J]. J Environ Radioact,2001,52 (2-3):191−213. doi: 10.1016/S0265-931X(00)00033-3
    [24]
    Prajapati SK,Tripathi BD. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution[J]. J Environ Qual,2008,37 (3):865−870. doi: 10.2134/jeq2006.0511
    [25]
    Li XL,Zhang TR,Sun FB,Song XM,Zhang YK,et al. The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou,China[J]. Sci Total Environ,2021,771:144812. doi: 10.1016/j.scitotenv.2020.144812
    [26]
    Sun XD,Li HM,Guo X,Sun YK,Li SM. Capacity of six shrub species to retain atmospheric particulates with different diameters[J]. Environ Sci Pollut Res,2018,25 (3):2643−2650. doi: 10.1007/s11356-017-0549-2
    [27]
    Dang N,Zhang HD,Salam MMA,Li HM,Chen GC. Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou:Seasonal changes[J]. Environ Pollut,2022,306:119472. doi: 10.1016/j.envpol.2022.119472
    [28]
    Przybysz A,Sæbø A,Hanslin HM,Gawroński SW. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level,rainfall and the passage of time[J]. Sci Total Environ,2014,481:360−369. doi: 10.1016/j.scitotenv.2014.02.072
    [29]
    刘维欢,李维维,裴顺祥,李晓刚. 我国常见园林植物叶片滞尘能力分析[J]. 林业与生态科学,2021,36(3):328−336.

    Liu WH,Li WW,Pei SX,Li XG. Analysis on the dust-retention ability of common garden plants in China[J]. Forestry and Ecological Sciences,2021,36 (3):328−336.
    [30]
    Liu HL,Zhou J,Li M,Xia RZ,Wang XZ,Zhou J. Dynamic behaviors of newly deposited atmospheric heavy metals in the soil-pak choi system[J]. Environ Sci Technol,2022,56 (17):12734−12744. doi: 10.1021/acs.est.2c04062
    [31]
    Li CC,Dang F,Li M,Zhu M,Zhong H,et al. Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice[J]. Nanotoxicology,2017,11 (5):699−709. doi: 10.1080/17435390.2017.1344740
    [32]
    Ma C,Liu FY,Hu B,Wei MB,Zhao JH,et al. Direct evidence of lead contamination in wheat tissues from atmospheric deposition based on atmospheric deposition exposure contrast tests[J]. Ecotoxicol Environ Saf,2019,185:109688. doi: 10.1016/j.ecoenv.2019.109688
    [33]
    张大庚,栗杰,姚忠丽. 不同形态大气铅沉降对茄苗生长和铅积累特征影响[J]. 农业资源与环境学报,2023,40(3):626−635. doi: 10.13254/j.jare.2022.0439

    Zhang DG,Li J,Yao ZL. Effects of Pb deposited from the atmosphere on the growth and Pb accumulation characteristics of eggplant seedlings[J]. Journal of Agricultural Resources and Environment,2023,40 (3):626−635. doi: 10.13254/j.jare.2022.0439
    [34]
    Birbaum K,Brogioli R,Schellenberg M,Martinoia E,Stark WJ,et al. No evidence for cerium dioxide nanoparticle translocation in maize plants[J]. Environ Sci Technol,2010,44 (22):8718−8723. doi: 10.1021/es101685f
    [35]
    林鑫涛,叶诺楠,王彬,陈健,游诗雪,张昕丽. 亚热带常绿树种对不同粒径颗粒物的滞留能力[J]. 广西植物,2016,36(2):170−176,185.

    Lin XT,Ye NN,Wang B,Chen J,You SX,Zhang XL. Different sizes of particulate matters deposited on leaf of typical subtropical evergreen species[J]. Guihaia,2016,36 (2):170−176,185.
    [36]
    卢绘,张银龙,吴永波. 植物叶面吸收污染物机制研究进展[J]. 环境化学,2020,39(12):3371−3383.

    Lu H,Zhang YL,Wu YB. Research progress on foliar absorption mechanism of pollutants[J]. Environmental Chemistry,2020,39 (12):3371−3383.
    [37]
    Gao PP,Xue PY,Dong JW,Zhang XM,Sun HX,et al. Contribution of PM2.5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata[J]. J Hazard Mater,2021,407:124356. doi: 10.1016/j.jhazmat.2020.124356
    [38]
    Shahid M,Natasha,Dumat C,Niazi NK,Xiong TT,et al. Ecotoxicology of heavy metal(loid)-enriched particulate matter:foliar accumulation by plants and health impacts[J]. Rev Environ Contam Toxicol,2021,253:65−113.
    [39]
    Ma C,Xie P,Zhang K,Yang JX,Li XZ,et al. Contribution of the flag leaf to lead absorption in wheat grain at the grain-filling stage[J]. Ecotoxicol Environ Saf,2021,225:112722. doi: 10.1016/j.ecoenv.2021.112722
    [40]
    Gajbhiye T,Pandey SK,Kim KH,Szulejko JE,Prasad S. Airborne foliar transfer of PM bound heavy metals in Cassia siamea:a less common route of heavy metal accumulation[J]. Sci Total Environ,2016,573:123−130. doi: 10.1016/j.scitotenv.2016.08.099
    [41]
    Chamel A,Pineri M,Escoubes M. Quantitative determination of water sorption by plant cuticles[J]. Plant Cell Environ,1991,14 (1):87−95. doi: 10.1111/j.1365-3040.1991.tb01374.x
    [42]
    Larue C,Castillo-Michel H,Sobanska S,Cécillon L,Bureau S,et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles:evidence for internalization and changes in Ag speciation[J]. J Hazard Mater,2014,264:98−106. doi: 10.1016/j.jhazmat.2013.10.053
    [43]
    Riederer M. Biology of the plant cuticle [M]//Riederer M, Müller C, eds. Annual Plant Reviews. Oxford: Blackwell Publishing Ltd, 2008: 1-11.
    [44]
    Schönherr J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes[J]. J Exp Bot,2006,57 (11):2471−2491. doi: 10.1093/jxb/erj217
    [45]
    Eichert T,Kurtz A,Steiner U,Goldbach HE. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiol Plant,2008,134 (1):151−160. doi: 10.1111/j.1399-3054.2008.01135.x
    [46]
    Fernández V,Eichert T. Uptake of hydrophilic solutes through plant leaves:current state of knowledge and perspectives of foliar fertilization[J]. Crit Rev Plant Sci,2009,28 (1-2):36−68. doi: 10.1080/07352680902743069
    [47]
    Ouyang XX,Ma J,Zhang R,Li P,Gao M,et al. Uptake of atmospherically deposited cadmium by leaves of vegetables:subcellular localization by NanoSIMS and potential risks[J]. J Hazard Mater,2022,431:128624. doi: 10.1016/j.jhazmat.2022.128624
    [48]
    Chen DL,Yin S,Zhang XY,Lyu J,Zhang YR,et al. A high-resolution study of PM2.5 accumulation inside leaves in leaf stomata compared with non-stomatal areas using three-dimensional X-ray microscopy[J]. Sci Total Environ,2022,852:158543. doi: 10.1016/j.scitotenv.2022.158543
    [49]
    Larue C,Castillo-Michel H,Sobanska S,Trcera N,Sorieul S,et al. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure[J]. J Hazard Mater,2014,273:17−26. doi: 10.1016/j.jhazmat.2014.03.014
    [50]
    张罡,安海龙,史军娜,刘超,田菊,等. 欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力[J]. 北京林业大学学报,2017,39(4):46−54. doi: 10.13332/j.1000-1522.20160376

    Zhang G,An HL,Shi JN,Liu C,Tian J,et al. Deposition and absorption capacity of Populus deltoides × P. nigra to different size zinc oxide aerosol[J]. Journal of Beijing Forestry University,2017,39 (4):46−54. doi: 10.13332/j.1000-1522.20160376
    [51]
    刘宇,张银龙. 植物叶面吸附与吸收PM2.5等颗粒物中重金属研究进展[J]. 世界林业研究,2022,35(4):8−13.

    Liu Y,Zhang YL. Research progress in heavy metals in PM2.5 and other atmospheric particulate matters retained and absorbed on plant leaf surface[J]. World Forestry Research,2022,35 (4):8−13.
    [52]
    Burkhardt J,Basi S,Pariyar S,Hunsche M. Stomatal penetration by aqueous solutions-an update involving leaf surface particles[J]. New Phytol,2012,196 (3):774−787. doi: 10.1111/j.1469-8137.2012.04307.x
    [53]
    Fernández V,Brown PH. From plant surface to plant metabolism:the uncertain fate of foliar-applied nutrients[J]. Front Plant Sci,2013,4:289.
    [54]
    Luo J,Niu YD,Zhang Y,Zhang M,Tian YX,Zhou XL. Dynamic analysis of retention PM2.5 by plant leaves in rainfall weather conditions of six tree species[J]. Energy Sources Part A Recov Utilizat Environ Effects,2020,42 (8):1014−1025.
    [55]
    Avellan A,Yun J,Morais BP,Clement ET,Rodrigues SM,Lowry GV. Critical review:role of inorganic nanoparticle properties on their foliar uptake and in Planta translocation[J]. Environ Sci Technol,2021,55 (20):13417−13431. doi: 10.1021/acs.est.1c00178
    [56]
    Li LP,Zhang YQ,Ippolito JA,Xing WQ,Qiu KY,et al. Lead smelting effects heavy metal concentrations in soils,wheat,and potentially humans[J]. Environ Pollut,2020,257:113641. doi: 10.1016/j.envpol.2019.113641
    [57]
    Yan BF,Nguyen C,Pokrovsky OS,Candaudap F,Coriou C,et al. Cadmium allocation to grains in durum wheat exposed to low Cd concentrations in hydroponics[J]. Ecotoxicol Environ Saf,2019,184:109592. doi: 10.1016/j.ecoenv.2019.109592
    [58]
    Hu Y,Tian SK,Foyer CH,Hou DD,Wang HX,et al. Efficient phloem transport significantly remobilizes cadmium from old to young organs in a hyperaccumulator Sedum alfredii[J]. J Hazard Mater,2019,365:421−429. doi: 10.1016/j.jhazmat.2018.11.034
    [59]
    Zhou WB,Qiu BS. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae)[J]. Plant Sci,2005,169 (4):737−745. doi: 10.1016/j.plantsci.2005.05.030
    [60]
    Ma C,Liu FY,Xie P,Zhang K,Yang JX,et al. Mechanism of Pb absorption in wheat grains[J]. J Hazard Mater,2021,415:125618. doi: 10.1016/j.jhazmat.2021.125618
    [61]
    Ma C,Xie P,Yang J,Lin L,Zhang K,Zhang HZ. Evaluating the contributions of leaf organ to wheat grain cadmium at the filling stage[J]. Sci Total Environ,2022,833:155217. doi: 10.1016/j.scitotenv.2022.155217
    [62]
    Xu ZQ,Zhu Z,Zhao YH,Huang Z,Fei JC,et al. Foliar uptake,accumulation,and distribution of cadmium in rice (Oryza sativa L. ) at different stages in wet deposition conditions[J]. Environ Pollut,2022,306:119390. doi: 10.1016/j.envpol.2022.119390
    [63]
    Večeřová K,Večeřa Z,Dočekal B,Oravec M,Pompeiano A,et al. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles[J]. Environ Pollut,2016,218:207−218. doi: 10.1016/j.envpol.2016.05.013
    [64]
    Dollard GJ. Glasshouse experiments on the uptake of foliar applied lead[J]. Environ Pollut Ser A Ecol Biol,1986,40 (2):109−119. doi: 10.1016/0143-1471(86)90078-4
    [65]
    Xiong TT,Austruy A,Pierart A,Shahid M,Schreck E,et al. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture[J]. J Environ Sci,2016,46:16−27. doi: 10.1016/j.jes.2015.08.029
    [66]
    Deng THB,Tang YT,van der Ent A,Sterckeman T,Echevarria G,et al. Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae)[J]. Plant Soil,2016,404 (1-2):35−45. doi: 10.1007/s11104-016-2825-1
    [67]
    Cakmak I,Welch RM,Hart J,Norvell WA,Oztürk L,et al. Uptake and retranslocation of leaf‐applied cadmium (109Cd) in diploid,tetraploid and hexaploid wheats[J]. J Exp Bot,2000,51 (343):221−226. doi: 10.1093/jexbot/51.343.221
    [68]
    Wang JB,Su LY,Yang JZ,Yuan JG,Yin AG,et al. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress (Nasturtium officinale L. R. Br. )[J]. Plant Soil,2015,396 (1):325−337.
    [69]
    Schreck E,Foucault Y,Sarret G,Sobanska S,Cécillon L,et al. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout:mechanisms involved for lead[J]. Sci Total Environ,2012,427-428:253−262. doi: 10.1016/j.scitotenv.2012.03.051
    [70]
    Schönherr J,Fernández V,Schreiber L. Rates of cuticular penetration of chelated Fe:role of humidity,concentration,adjuvants,temperature,and type of chelate[J]. J Agric Food Chem,2005,53 (11):4484−4492. doi: 10.1021/jf050453t
    [71]
    Fu XP,Dou CM,Chen YX,Chen XC,Shi JY,et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. J Hazard Mater,2011,186 (1):103−107. doi: 10.1016/j.jhazmat.2010.10.122
    [72]
    Lindow SE,Brandl MT. Microbiology of the phyllosphere[J]. Appl Environ Microbiol,2003,69 (4):1875−1883. doi: 10.1128/AEM.69.4.1875-1883.2003
    [73]
    Uzu G,Sobanska S,Sarret G,Muñoz M,Dumat C. Foliar lead uptake by lettuce exposed to atmospheric fallouts[J]. Environ Sci Technol,2010,44 (3):1036−1042. doi: 10.1021/es902190u
    [74]
    Xie Y,Bu HS,Feng QJ,Wassie M,Amee M,et al. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass[J]. Environ Res,2021,200:111730. doi: 10.1016/j.envres.2021.111730
    [75]
    Villiers F,Ducruix C,Hugouvieux V,Jarno N,Ezan E,et al. Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches[J]. Proteomics,2011,11 (9):1650−1663. doi: 10.1002/pmic.201000645
    [76]
    Ackova DG. Heavy metals and their general toxicity for plants[J]. Plant Sci Today,2018,5 (1):14−18. doi: 10.14719/pst.2018.5.1.355
    [77]
    Wang P,Lombi E,Zhao FJ,Kopittke PM. Nanotechnology:a new opportunity in plant sciences[J]. Trends Plant Sci,2016,21 (8):699−712. doi: 10.1016/j.tplants.2016.04.005
    [78]
    Hong J,Wang C,Wagner DC,Gardea-Torresdey JL,He F,Rico CM. Foliar application of nanoparticles:mechanisms of absorption,transfer,and multiple impacts[J]. Environ Sci Nano,2021,8 (5):1196−1210. doi: 10.1039/D0EN01129K
    [79]
    Wu J,Wang GY,Vijver MG,Bosker T,Peijnenburg WJGM. Foliar versus root exposure of AgNPs to lettuce:Phytotoxicity,antioxidant responses and internal translocation[J]. Environ Pollut,2020,261:114117. doi: 10.1016/j.envpol.2020.114117
    [80]
    刘程,蒋大程,宋晓旭,邱念伟,周峰. 叶绿素家族成员的结构差异与生物合成[J]. 植物生理学报,2020,56(3):356−366. doi: 10.13592/j.cnki.ppj.2019.0359

    Liu C,Jiang DC,Song XX,Qiu NW,Zhou F. The structural differences and biosynthesis of chlorophyll family members[J]. Plant Physiology Journal,2020,56 (3):356−366. doi: 10.13592/j.cnki.ppj.2019.0359
    [81]
    Saleh SR,Kandeel MM,Ghareeb D,Ghoneim TM,Talha NI,et al. Wheat biological responses to stress caused by cadmium,nickel and lead[J]. Sci Total Environ,2020,706:136013. doi: 10.1016/j.scitotenv.2019.136013
    [82]
    Lu K,Shen DL,Liu XK,Dong SP,Jing XP,et al. Uptake of iron oxide nanoparticles inhibits the photosynthesis of the wheat after foliar exposure[J]. Chemosphere,2020,259:127445. doi: 10.1016/j.chemosphere.2020.127445
    [83]
    Xiong TT,Zhang T,Dumat C,Sobanska S,Dappe V,et al. Airborne foliar transfer of particular metals in Lactuca sativa L.:translocation,phytotoxicity,and bioaccessibility[J]. Environ Sci Pollut Res,2019,26 (20):20064−20078. doi: 10.1007/s11356-018-3084-x
    [84]
    Perreault F,Samadani M,Dewez D. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L.[J]. Nanotoxicology,2014,8 (4):374−382. doi: 10.3109/17435390.2013.789936
    [85]
    Xie XL,He ZQ,Chen NF,Tang ZZ,Wang Q,Cai Y. The roles of environmental factors in regulation of oxidative stress in plant[J]. BioMed Res Int,2019,2019:9732325.
    [86]
    张梦如,杨玉梅,成蕴秀,周滔,段晓艳,等. 植物活性氧的产生及其作用和危害[J]. 西北植物学报,2014,34(9):1916−1926.

    Zhang MR,Yang YM,Cheng YX,Zhou T,Duan XY,et al. Generation of reactive oxygen species and their functions and deleterious effects in plants[J]. Acta Botanica Boreali-Occidentalia Sinica,2014,34 (9):1916−1926.
    [87]
    Muzafffar A, Muzaffar U. Chapter8-Effects of dyshomeostasis of metals/metalloids on the generation of reactive oxygen and nitrogen species in plant tissues[M]//Aftab T, Hakeem K, eds. Metals Metalloids Soil Plant Water Systems. Cambridge: Academic Press, 2022: 185-198.
    [88]
    Demidchik V. Mechanisms of oxidative stress in plants:from classical chemistry to cell biology[J]. Environ Exp Bot,2015,109:212−228. doi: 10.1016/j.envexpbot.2014.06.021
    [89]
    Dubey S,Shri M,Gupta A,Rani V,Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism[J]. Environ Chem Lett,2018,16 (4):1169−1192. doi: 10.1007/s10311-018-0741-8
    [90]
    Liu JG,Qu P,Zhang W,Dong Y,Li L,Wang MX. Variations among rice cultivars in subcellular distribution of Cd:the relationship between translocation and grain accumulation[J]. Environ Exp Bot,2014,107:25−31. doi: 10.1016/j.envexpbot.2014.05.004
    [91]
    Weng BS,Xie XY,Weiss DJ,Liu JC,Lu HL,Yan CL. Kandelia obovata (S.,L. ) Yong tolerance mechanisms to Cadmium:subcellular distribution,chemical forms and thiol pools[J]. Mar Pollut Bull,2012,64 (11):2453−2460. doi: 10.1016/j.marpolbul.2012.07.047
    [92]
    Hasanuzzaman M,Bhuyan MHMB,Zulfiqar F,Raza A,Mohsin SM,et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress:revisiting the crucial role of a universal defense regulator[J]. Antioxidants,2020,9 (8):681. doi: 10.3390/antiox9080681
    [93]
    Pandita D. Chapter17-Reactive oxygen and nitrogen species: Antioxidant defense studies in plants[M]//Aftab T, Roychoudhury A, eds. Plant Perspectives to Global Climate Changes. Cambridge: Academic Press, 2022: 355-371.
    [94]
    Sharma P,Jha AB,Dubey RS,Pessarakli M. Reactive oxygen species,oxidative damage,and antioxidative defense mechanism in plants under stressful conditions[J]. J Bot,2012,2012:217037.
    [95]
    Hasanuzzaman M,Bhuyan MHMB,Anee TI,Parvin K,Nahar K,et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress[J]. Antioxidants (Basel),2019,8 (9):384. doi: 10.3390/antiox8090384
  • Related Articles

    [1]Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282
    [2]Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140
    [3]Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152
    [4]Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
    [5]ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487
    [6]CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394
    [7]SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346.
    [8]CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353
    [9]He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588.
    [10]CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266.
  • Cited by

    Periodical cited type(3)

    1. 贺文琪,柴国柱,薛矗,山晓丹,兰小中. 西藏11种菊科药用植物染色体核型研究. 种子. 2025(02): 190-201 .
    2. 李璨,刘庆龙,尤丽梅,林乙明,陈世品. 福建野生水生植物区系特征研究. 中国野生植物资源. 2025(03): 128-134 .
    3. 马启奥,孙楷,王宏超,李利平,李颖,李晓琳,程蒙,杨光,池秀莲. 高黎贡山区域中药材药性的组成特征及垂直格局. 中国现代中药. 2024(11): 1833-1842 .

    Other cited types(5)

Catalog

    Article views (454) PDF downloads (74) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return