Citation: | Zhang WL,Ding Y. Regulation of hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. by U2BL[J]. Plant Science Journal,2024,42(1):66−74. DOI: 10.11913/PSJ.2095-0837.23065 |
Hypocotyl elongation is essential for early survival and later growth and development in plants. In this investigation, we examined and screened Arabidopsis thaliana (L.) Heynh. mutant phenotypes, identifying the u2bl variant with a notable short hypocotyl. We also conducted preliminary studies on the role of U2BL in the regulation of hypocotyl development in A. thaliana. The u2bl mutant showed a short hypocotyl phenotype under different light conditions. Cytological experiments showed the shorter cell length of hypocotyls in the u2bl mutant was the reason for its short hypocotyl phenotype. The plant hormone gibberellin (GAs) is the main factor promoting hypocotyl elongation, while paclobutrazol (PAC) is an endogenous GA synthesis inhibitor. Our study showed that the u2bl mutant was not sensitive to exogenous GA treatment or PAC treatment, indicating that U2BL affected GA signal transduction. Subcellular localization results indicated that U2BL was enriched in the nucleus. Furthermore, Q-PCR assay showed that the transcription levels of PRE1, SAUR16, YUC2, YUC8, and PIF4 genes were all significantly down-regulated in the u2bl mutant, suggesting that U2BL may indirectly regulate hypocotyl elongation by regulating the above genes. Our study provided a reference for further research on the possible functions of U2BL in the growth and development of A. thaliana and other species.
[1] |
Boron AK,Vissenberg K. The Arabidopsis thaliana hypocotyl,a model to identify and study control mechanisms of cellular expansion[J]. Plant Cell Rep,2014,33(5):697−706. doi: 10.1007/s00299-014-1591-x
|
[2] |
Quail PH. Phytochrome photosensory signalling networks[J]. Nat Rev Mol Cell Biol,2002,3(2):85−93.
|
[3] |
Rizzini L,Favory JJ,Cloix C,Faggionato D,O’hara A,et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science,2011,332(6025):103−106. doi: 10.1126/science.1200660
|
[4] |
McNellis TW,Deng XW. Light control of seedling morphogenetic pattern[J]. Plant Cell,1995,7(11):1749−1761.
|
[5] |
Deng XW,Quail PH. Signalling in light-controlled development[J]. Semin Cell Dev Biol,1999,10(2):121−129. doi: 10.1006/scdb.1999.0287
|
[6] |
Lian HL,He SB,Zhang YC,Zhu DM,Zhang JY,et al. Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism[J]. Genes Dev,2011,25(10):1023−1028. doi: 10.1101/gad.2025111
|
[7] |
Liu B,Zuo ZC,Liu HT,Liu XM,Lin CT. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light[J]. Genes Dev,2011,25(10):1029−1034. doi: 10.1101/gad.2025011
|
[8] |
Zuo ZC,Liu HT,Liu B,Liu XM,Lin CT. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis[J]. Curr Biol,2011,21(10):841−847. doi: 10.1016/j.cub.2011.03.048
|
[9] |
Quail PH,Boylan MT,Parks BM,Short TW,Xu Y,Wagner D. Phytochromes:photosensory perception and signal transduction[J]. Science,1995,268(5211):675−680. doi: 10.1126/science.7732376
|
[10] |
Somers DE,Sharrock RA,Tepperman JM,Quail PH. The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B[J]. Plant Cell,1991,3(12):1263−1274. doi: 10.2307/3869307
|
[11] |
Huq E,Al-Sady B,Hudson M,Kim C,Apel K,Quail PH. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis[J]. Science,2004,305(5692):1937−1941. doi: 10.1126/science.1099728
|
[12] |
Leivar P,Quail PH. PIFs:pivotal components in a cellular signaling hub[J]. Trends Plant Sci,2011,16(1):19−28. doi: 10.1016/j.tplants.2010.08.003
|
[13] |
Al-Sady B,Ni WM,Kircher S,Schäfer E,Quail PH. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation[J]. Mol Cell,2006,23(3):439−446. doi: 10.1016/j.molcel.2006.06.011
|
[14] |
Shen Y,Khanna R,Carle CM,Quail PH. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation[J]. Plant Physiol,2007,145(3):1043−1051. doi: 10.1104/pp.107.105601
|
[15] |
Shen H,Zhu L,Castillon A,Majee M,Downie B,Huq E. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes[J]. Plant Cell,2008,20(6):1586−1602. doi: 10.1105/tpc.108.060020
|
[16] |
Quint M,Delker C,Franklin KA,Wigge PA,Halliday KJ,van Zanten M. Molecular and genetic control of plant thermomorphogenesis[J]. Nat Plants,2016,2(1):15190. doi: 10.1038/nplants.2015.190
|
[17] |
Casal JJ,Balasubramanian S. Thermomorphogenesis[J]. Annu Rev Plant Biol,2019,70:321−346. doi: 10.1146/annurev-arplant-050718-095919
|
[18] |
Gil KE,Park CM. Thermal adaptation and plasticity of the plant circadian clock[J]. New Phytol,2019,221(3):1215−1229. doi: 10.1111/nph.15518
|
[19] |
Fiorucci AS,Galvão VC,Ince YÇ,Boccaccini A,Goyal A,et al. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings[J]. New Phytol,2020,226(1):50−58. doi: 10.1111/nph.16316
|
[20] |
Bai MY,Shang JX,Oh E,Fan M,Bai Y,et al. Brassinosteroid,gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nat Cell Biol,2012,14(8):810−817. doi: 10.1038/ncb2546
|
[21] |
黄炎霞. 赤霉素调控的南方水稻黑条矮缩病的发病[D]. 福州: 福建农林大学, 2014: 106.
|
[22] |
Hedden P,Sponsel V. A century of gibberellin research[J]. J Plant Growth Regul,2015,34(4):740−760. doi: 10.1007/s00344-015-9546-1
|
[23] |
Takehara S,Sakuraba S,Mikami B,Yoshida H,Yoshimura H,et al. A common allosteric mechanism regulates homeostatic inactivation of auxin and gibberellin[J]. Nat Commun,2020,11(1):2143. doi: 10.1038/s41467-020-16068-0
|
[24] |
李欣. 大豆GmGAMYB基因调控花期与株高的功能研究[D]. 哈尔滨: 东北农业大学, 2021: 68.
|
[25] |
李保珠,赵翔,安国勇. 赤霉素的研究进展[J]. 中国农学通报,2011,27(1):1−5.
Li BZ,Zhao X,An GY. Recent advances in research of gibberellin[J]. Chinese Agricultural Science Bulletin,2011,27(1):1−5.
|
[26] |
De Lucas M,Davière JM,Rodríguez-Falcón M,Pontin M,Iglesias-Pedraz JM,et al. A molecular framework for light and gibberellin control of cell elongation[J]. Nature,2008,451(7177):480−484. doi: 10.1038/nature06520
|
[27] |
Feng SH,Martinez C,Gusmaroli G,Wang Y,Zhou JL,et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature,2008,451(7177):475−479. doi: 10.1038/nature06448
|
[28] |
Ueguchi-Tanaka M,Ashikari M,Nakajima M,Itoh H,Katoh E,et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature,2005,437(7059):693−698. doi: 10.1038/nature04028
|
[29] |
Nakajima M,Shimada A,Takashi Y,Kim YC,Park SH,et al. Identification and characterization of Arabidopsis gibberellin receptors[J]. Plant J,2006,46(5):880−889. doi: 10.1111/j.1365-313X.2006.02748.x
|
[30] |
Griffiths J,Murase K,Rieu I,Zentella R,Zhang ZL,et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell,2006,18(12):3399−3414.
|
[31] |
Willige BC,Ghosh S,Nill C,Zourelidou M,Dohmann EMN,et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. Plant Cell,2007,19(4):1209−1220. doi: 10.1105/tpc.107.051441
|
[32] |
Suzuki H,Park SH,Okubo K,Kitamura J,Ueguchi-tanaka M,et al. Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knock-out mutants[J]. Plant J,2009,60(1):48−55. doi: 10.1111/j.1365-313X.2009.03936.x
|
[33] |
Cheng H,Qin LJ,Lee S,Fu XD,Richards DE,et al. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function[J]. Development,2004,131(5):1055−1064. doi: 10.1242/dev.00992
|
[34] |
Jangi M,Sharp PA. Building robust transcriptomes with master splicing factors[J]. Cell,2014,159(3):487−498. doi: 10.1016/j.cell.2014.09.054
|
[35] |
Vandivier LE,Anderson SJ,Foley SW,Gregory BD. The conservation and function of RNA secondary structure in plants[J]. Annu Rev Plant Biol,2016,67:463−488. doi: 10.1146/annurev-arplant-043015-111754
|
[36] |
Cho H,Cho HS,Hwang I. Emerging roles of RNA-binding proteins in plant development[J]. Curr Opin Plant Biol,2019,51:51−57. doi: 10.1016/j.pbi.2019.03.016
|
[37] |
Staněk D,Neugebauer KM. The Cajal body:a meeting place for spliceosomal snRNPs in the nuclear maze[J]. Chromosoma,2006,115(5):343−354. doi: 10.1007/s00412-006-0056-6
|
[38] |
Calixto CPG,Guo WB,James AB,Tzioutziou NA,Entizne JC,et al. Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome[J]. Plant Cell,2018,30(7):1424−1444. doi: 10.1105/tpc.18.00177
|
[39] |
Fukazawa J, Ito T, Kamiya Y, Yamaguchi S, Takahashi Y. Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner. Plant Signal Behav, 2015, 10(10): e1052923.
|
[40] |
Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. Plant Signal Behav, 2018, 13(3): e1445933.
|
[1] | Chen Yao, Zhang Zhi-Peng, Zhang Zhao, Zhang Yang, Xie Cai-Xiang, Xu Shuo. Effect of soil factors on the content of chemical components in Phellodendri Amurensis Cortex[J]. Plant Science Journal, 2019, 37(6): 797-807. DOI: 10.11913/PSJ.2095-0837.2019.60797 |
[2] | ZHANG Run-Hua, LI Zhi-Guo, LIU Xu-Dong, WANG Bin-Cai, WANG Ai-Hua, HUANG Xing-Xue, ZHOU Guo-Lin, QIAN Yun-Guo. Impact of Cultivation Change from Open Field to Greenhouse on Heavy Metal Contents and Fractions of Soil[J]. Plant Science Journal, 2016, 34(4): 575-582. DOI: 10.11913/PSJ.2095-0837.2016.40575 |
[3] | LIU Hai-Yan, HUANG Cai-Mei, ZHOU Sheng-Yong, HUANG Li-Hua, ZOU Tian-Cai. Study on the Content Changes of Zinc and Selenium in Tea and Differences in the Planting Soil[J]. Plant Science Journal, 2015, 33(2): 237-243. DOI: 10.11913/PSJ.2095-0837.2015.20237 |
[4] | OUYANG Zheng-Rong, WEN Xiao-Bin, GENG Ya-Hong, MEI Hong, HU Hong-Jun, ZHANG Gui-Yan, LI Ye-Guang. The Effects of Light Intensities, Temperatures, pH and Salinities on Photosynthesis of Chlorella[J]. Plant Science Journal, 2010, 28(1): 49-55. |
[5] | ZHANG Yue-Jin, MENG Xiang-Hai, YANG Dong-Feng, XU Ling, ZHANG Xiao-Yan. Comparative Study on Chemical Constituents of Pinellia ternata(Thunb.) Breit.under Different Light Intensities[J]. Plant Science Journal, 2009, 27(5): 533-536. |
[6] | MU Hong-Ping, YE Wan-Hui, CHEN Yi-Zhu, ZHU Jian-Ling, CAO Hong-Lin. Photosynthesis and Growth of Ardisia crenata and Ardisia punctata under Different Phosphorus Nutrition Levels[J]. Plant Science Journal, 2008, 26(5): 514-519. |
[7] | CHEN Xiao-Feng, WANG Qing-Ya, CHEN Kai-Ning. Impacts of Different Light Intensity on Morphology and Structure of Potamogeton crispus[J]. Plant Science Journal, 2008, 26(2): 163-169. |
[8] | XU Kai-Yang, YE Wan-Hui, LI Guo-Min, LI Jing. Phenotypic Plasticity in Response to Light Intensity in the Invasive Species Alternanthera philoxeroides[J]. Plant Science Journal, 2005, 23(6): 560-563. |
[9] | LIU Bing-Qin, WANG Wan-Xian, SONG Chun-Lei, CAO Xiu-Yun, ZHOU Yi-Yong. Influences of Potamogeton crispus L.on Phosphorus Status in Lake Sediments[J]. Plant Science Journal, 2004, 22(5): 394-399. |
[10] | Wang Fengchun, Liu Mingyuan. BIOSYSTEMATIES OF TRIFOLIUM PRATENSE L.IN THE EAST MOUNTAINS IN HEILONGJIANG PROVINCE, CHINA[J]. Plant Science Journal, 1989, 7(4): 317-326. |