Citation: | Lin H,Wang Z,Wang T,Su YJ. Analysis of multi-organ full-length transcriptome and structural genes involved in flavonoid biosynthesis of Gymnosphaera podophylla Dalla Torre & Sarnth.[J]. Plant Science Journal,2024,42(1):56−65. DOI: 10.11913/PSJ.2095-0837.23069 |
Gymnosphaera podophylla Dalla Torre & Sarnth. is a famous relict tree fern with strong environmental adaptability. However, the mechanisms underlying its adaptability remain unclear. In this study, the PacBio and Illumina platforms were used to sequence the root, rachis, and pinna transcriptomes of G. podophylla, resulting in the generation of 12 879, 14 185, and 16 084 full-length unigenes, respectively. Transcript quantification showed that these unigenes were related to drought resistance and biological stress and were highly expressed. KEGG enrichment analysis indicated that the up-regulated genes in the roots, rachis, and pinna were enriched in the "phenylpropane biosynthesis pathway", while the up-regulated genes in the roots and rachis were enriched in the "flavonoid biosynthetic pathway". A total of 192 full-length unigenes were annotated as structural genes involving 13 enzymes in the flavonoid biosynthesis pathway, including 112 differentially expressed genes (DEGs), suggesting that the flavonoid biosynthesis pathway was conserved in G. podophylla, with organ-specific DEGs. This research is the first to perform a comprehensive analysis of the full-length transcriptome across multiple organs in G. podophylla and to investigate the structural genes of the flavonoid biosynthetic pathway. This study provides an abundance of genetic resources for further examination of environmental adaptation in this species.
[1] |
苏应娟,王艇,郑博,江宇,欧阳蒲月,等. 根据cpDNA trnL-F非编码区序列变异分析黑桫椤海南和广东种群的遗传结构与系统地理[J]. 生态学报,2004,24(5):914−919. doi: 10.3321/j.issn:1000-0933.2004.05.008
Su YJ,Wang T,Zheng B,Jiang Y,Ouyang PY,et al. Genetic structure and phylogeography of populations of Alsophila podophylla in Hainan and Guangdong,southern China,based on cpDNA trnL-F noncoding sequences[J]. Acta Ecologica Sinica,2004,24(5):914−919. doi: 10.3321/j.issn:1000-0933.2004.05.008
|
[2] |
Ppg I. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol,2016,54(6):563−603. doi: 10.1111/jse.12229
|
[3] |
谢春平,赵柏松,刘大伟,方彦. 霸王岭自然保护区黑桫椤种群结构特征分析[J]. 四川农业大学学报,2018,36(6):765−771.
Xie CP,Zhao BS,Liu DW,Fang Y. Study on the population structure of Alsophila podophylla Hook. in Bawangling nature reserve[J]. Journal of Sichuan Agricultural University,2018,36(6):765−771.
|
[4] |
赵则海. 黑桫椤叶中总黄酮含量的测定[J]. 肇庆学院学报,2014,35(5):42−44. doi: 10.3969/j.issn.1009-8445.2014.05.011
Zhao ZH. Determination of flavonoids contents in leaves of Alsophila podophylla[J]. Journal of Zhaoqing University,2014,35(5):42−44. doi: 10.3969/j.issn.1009-8445.2014.05.011
|
[5] |
Dong NQ,Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. J Integr Plant Biol,2021,63(1):180−209. doi: 10.1111/jipb.13054
|
[6] |
葛诗蓓,张学宁,韩文炎,李青云,李鑫. 植物类黄酮的生物合成及其抗逆作用机制研究进展[J]. 园艺学报,2023,50(1):209−224.
Ge SB,Zhang XN,Han WY,Li QY,Li X. Research progress on plant flavonoids biosynthesis and their anti-stress mechanism[J]. Acta Horticulturae Sinica,2023,50(1):209−224.
|
[7] |
Zhang XX,Wang X,Wang ML,Cao JG,Xiao JB,Wang QX. Effects of different pretreatments on flavonoids and antioxidant activity of Dryopteris erythrosora leave[J]. PLoS One,2019,14(1):e0200174. doi: 10.1371/journal.pone.0200174
|
[8] |
Rybczyński JJ,Marczak Ł,Stobiecki M,Strugała A,Mikuła A. The metabolite content of the post-culture medium of the tree fern Cyathea delgadii Sternb. cell suspension cultured in the presence of 2,4-D and BAP[J]. Int J Mol Sci,2022,23(19):11783. doi: 10.3390/ijms231911783
|
[9] |
Hong YF,Wang Z,Li MH,Su YJ,Wang T. First multi-organ full-length transcriptome of tree fern Alsophila spinulosa highlights the stress-resistant and light-adapted genes[J]. Front Genet,2022,12:784546. doi: 10.3389/fgene.2021.784546
|
[10] |
Sun MY,Li JY,Li D,Huang FJ,Wang D,et al. Full-length transcriptome sequencing and modular organization analysis of the naringin/neoeriocitrin-related gene expression pattern in Drynaria roosii[J]. Plant Cell Physiol,2018,59(7):1398−1414.
|
[11] |
Niu M,Fu J,Ni R,Xiong RL,Zhu TT,et al. Functional and structural investigation of chalcone synthases based on integrated metabolomics and transcriptome analysis on flavonoids and anthocyanins biosynthesis of the fern Cyclosorus parasiticus[J]. Front Plant Sci,2021,12:757516. doi: 10.3389/fpls.2021.757516
|
[12] |
Bolger AM,Lohse M,Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics,2014,30(15):2114−2120. doi: 10.1093/bioinformatics/btu170
|
[13] |
Grabherr MG,Haas BJ,Yassour M,Levin JZ,Thompson DA,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol,2011,29(7):644−652. doi: 10.1038/nbt.1883
|
[14] |
Davidson NM,Oshlack A. Corset:enabling differential gene expression analysis for de novo assembled transcriptomes[J]. Genome Biol,2014,15(7):410.
|
[15] |
Salmela L,Rivals E. LoRDEC:accurate and efficient long read error correction[J]. Bioinformatics,2014,30(24):3506−3514. doi: 10.1093/bioinformatics/btu538
|
[16] |
Fu LM,Niu BF,Zhu ZW,Wu ST,Li WZ. CD-HIT:accelerated for clustering the next-generation sequencing data[J]. Bioinformatics,2012,28(23):3150−3152. doi: 10.1093/bioinformatics/bts565
|
[17] |
Altschul SF,Gish W,Miller W,Myers EW,Lipman DJ. Basic local alignment search tool[J]. J Mol Biol,1990,215(3):403−410. doi: 10.1016/S0022-2836(05)80360-2
|
[18] |
Buchfink B,Xie C,Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods,2015,12(1):59−60. doi: 10.1038/nmeth.3176
|
[19] |
Finn RD,Clements J,Eddy SR. HMMER web server:interactive sequence similarity searching[J]. Nucleic Acids Res,2011,39(S2):W29−W37.
|
[20] |
Shimizu K,Adachi J,Muraoka Y. ANGLE:a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA[J]. J Bioinform Comput Biol,2006,4(3):649−664. doi: 10.1142/S0219720006002260
|
[21] |
Beier S,Thiel T,Münch T,Scholz U,Mascher M. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics,2017,33(16):2583−2585. doi: 10.1093/bioinformatics/btx198
|
[22] |
Zheng Y,Jiao C,Sun HH,Rosli HG,Pombo MA,et al. iTAK:a program for genome-wide prediction and classification of plant transcription factors,transcriptional regulators,and protein kinases[J]. Mol Plant,2016,9(12):1667−1670. doi: 10.1016/j.molp.2016.09.014
|
[23] |
Sun L,Luo HT,Bu DC,Zhao GG,Yu KT,et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Res,2013,41(17):e166. doi: 10.1093/nar/gkt646
|
[24] |
Kong L,Zhang Y,Ye ZQ,Liu XQ,Zhao SQ,et al. CPC:assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Res,2007,35(S2):W345−W349.
|
[25] |
Finn RD,Coggill P,Eberhardt RY,Eddy SR,Mistry J,et al. The Pfam protein families database:towards a more sustainable future[J]. Nucleic Acids Res,2016,44(D1):D279−D285. doi: 10.1093/nar/gkv1344
|
[26] |
Li AM,Zhang JY,Zhou ZY. PLEK:a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme[J]. BMC Bioinformatics,2014,15(1):311. doi: 10.1186/1471-2105-15-311
|
[27] |
Langmead B,Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods,2012,9(4):357−359. doi: 10.1038/nmeth.1923
|
[28] |
Li B,Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323. doi: 10.1186/1471-2105-12-323
|
[29] |
Anders S,Huber W. Differential expression analysis for sequence count data[J]. Genome Biol,2010,11(10):R106. doi: 10.1186/gb-2010-11-10-r106
|
[30] |
Chen CJ,Chen H,Zhang Y,Thomas HR,Frank MH,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant,2020,13(8):1194−1202. doi: 10.1016/j.molp.2020.06.009
|
[31] |
Guo L,Qi YT,Mu Y,Zhou J,Lu WH,Tian ZD. Potato StLecRK-Ⅳ. 1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8[J]. Hortic Res,2022,9:uhac010.
|
[32] |
Li JJ,Li Y,Yin ZG,Jiang JH,Zhang MH,et al. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice[J]. Plant Biotechnol J,2017,15(2):183−196. doi: 10.1111/pbi.12601
|
[33] |
Rutter BD,Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins[J]. Plant Physiol,2017,173(1):728−741. doi: 10.1104/pp.16.01253
|
[34] |
Maskin L,Gudesblat GE,Moreno JE,Carrari FO,Frankel N,et al. Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum)[J]. Plant Sci,2001,161(4):739−746. doi: 10.1016/S0168-9452(01)00464-2
|
[35] |
Dominguez PG,Conti G,Duffy T,Insani M,Alseekh S,et al. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits[J]. J Exp Bot,2021,72(18):6490−6509. doi: 10.1093/jxb/erab269
|
[36] |
Golan I,Dominguez PG,Konrad Z,Shkolnik-Inbar D,Carrari F,Bar-Zvi D. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited[J]. PLoS One,2014,9(10):e107117. doi: 10.1371/journal.pone.0107117
|
[37] |
Ritenour MA,Kochhar S,Schrader LE,Hsu TP,Ku MSB. Characterization of heat shock protein expression in apple peel under field and laboratory conditions[J]. J Am Soc Hortic Sci,2001,126(5):564−570. doi: 10.21273/JASHS.126.5.564
|
[38] |
尹兵兵,潘凌云,付畅. 逆境下植物MAPK级联途径基因的表达调控[J]. 分子植物育种,2022,20(10):3257−3265.
Yin BB,Pan LY,Fu C. Regulation of gene expression of plant MAPK cascade pathway under environmental[J]. Molecular Plant Breeding,2022,20(10):3257−3265.
|
[39] |
Huang X,Wang WL,Gong T,Wickell D,Kuo LY,et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence[J]. Nat Plants,2022,8(5):500−512. doi: 10.1038/s41477-022-01146-6
|
[40] |
Wanner LA,Li GQ,Ware D,Somssich IE,Davis KR. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana[J]. Plant Mol Biol,1995,27(2):327−338. doi: 10.1007/BF00020187
|
[41] |
Shirley BW,Kubasek WL,Storz G,Bruggemann E,Koornneef M,et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis[J]. Plant J,1995,8(5):659−671. doi: 10.1046/j.1365-313X.1995.08050659.x
|
[42] |
Ni R,Niu M,Fu J,Tan H,Zhu TT,et al. Molecular and structural characterization of a promiscuous chalcone synthase from the fern species Stenoloma chusanum[J]. J Integr Plant Biol,2022,64(10):1935−1951. doi: 10.1111/jipb.13335
|
[43] |
林江波,王伟英,邹晖,戴艺民. 基于转录组测序的铁皮石斛黄酮代谢途径及相关基因解析[J]. 福建农业学报,2019,34(9):1019−1025.
Lin JB,Wang WY,Zou H,Dai YM. Transcriptome analysis on pathway of and genes Related to flavonoid synthesis in Dendrobium officinale[J]. Fujian Journal of Agricultural Sciences,2019,34(9):1019−1025.
|
[44] |
Christensen AB,Gregersen PL,Schröder J,Collinge DB. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack[J]. Plant Mol Biol,1998,37(5):849−857. doi: 10.1023/A:1006031822141
|
[45] |
Rudrapal M,Khan J,Dukhyil AAB,Alarousy RMII,Attah EI,et al. Chalcone scaffolds,bioprecursors of flavonoids:chemistry,bioactivities,and pharmacokinetics[J]. Molecules,2021,26(23):7177. doi: 10.3390/molecules26237177
|
[46] |
Van Tunen AJ,Mur LA,Recourt K,Gerats AG,Mol JN. Regulation and manipulation of flavonoid gene expression in anthers of petunia:the molecular basis of the Po mutation[J]. Plant Cell,1991,3(1):39−48.
|
[47] |
Yonekura-Sakakibara K,Higashi Y,Nakabayashi R. The origin and evolution of plant flavonoid metabolism[J]. Front Plant Sci,2019,10:943. doi: 10.3389/fpls.2019.00943
|
[48] |
Owens DK,Alerding AB,Crosby KC,Bandara AB,Westwood JH,Winkel BSJ. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis[J]. Plant Physiol,2008,147(3):1046−1061. doi: 10.1104/pp.108.117457
|
[49] |
Sudheeran PK,Ovadia R,Galsarker O,Maoz I,Sela N,et al. Glycosylated flavonoids:fruit′s concealed antifungal arsenal[J]. New Phytol,2020,225(4):1788−1798. doi: 10.1111/nph.16251
|
[50] |
陈雪菲,张映雪,黄贤燕,王全喜,曹建国,王幼芳. 蕨类植物花青素和原花青素成分及含量分析[J]. 植物科学学报,2020,38(6):820−830. doi: 10.11913/PSJ.2095-0837.2020.60820
Chen XF,Zhang YX,Huang XY,Wang QX,Cao JG,Wang YF. Composition and content analysis of anthocyanidins and proanthocyanidins in ferns[J]. Plant Science Journal,2020,38(6):820−830. doi: 10.11913/PSJ.2095-0837.2020.60820
|
[51] |
肖珍. 黄酮醇和花青素在植物抗逆中的功能差异研究[D]. 济南: 山东大学, 2018: 1-20.
|
[52] |
Taylor LP,Grotewold E. Flavonoids as developmental regulators[J]. Curr Opin Plant Biol,2005,8(3):317−323. doi: 10.1016/j.pbi.2005.03.005
|
[1] | Chen Yao, Zhang Zhi-Peng, Zhang Zhao, Zhang Yang, Xie Cai-Xiang, Xu Shuo. Effect of soil factors on the content of chemical components in Phellodendri Amurensis Cortex[J]. Plant Science Journal, 2019, 37(6): 797-807. DOI: 10.11913/PSJ.2095-0837.2019.60797 |
[2] | ZHANG Run-Hua, LI Zhi-Guo, LIU Xu-Dong, WANG Bin-Cai, WANG Ai-Hua, HUANG Xing-Xue, ZHOU Guo-Lin, QIAN Yun-Guo. Impact of Cultivation Change from Open Field to Greenhouse on Heavy Metal Contents and Fractions of Soil[J]. Plant Science Journal, 2016, 34(4): 575-582. DOI: 10.11913/PSJ.2095-0837.2016.40575 |
[3] | LIU Hai-Yan, HUANG Cai-Mei, ZHOU Sheng-Yong, HUANG Li-Hua, ZOU Tian-Cai. Study on the Content Changes of Zinc and Selenium in Tea and Differences in the Planting Soil[J]. Plant Science Journal, 2015, 33(2): 237-243. DOI: 10.11913/PSJ.2095-0837.2015.20237 |
[4] | OUYANG Zheng-Rong, WEN Xiao-Bin, GENG Ya-Hong, MEI Hong, HU Hong-Jun, ZHANG Gui-Yan, LI Ye-Guang. The Effects of Light Intensities, Temperatures, pH and Salinities on Photosynthesis of Chlorella[J]. Plant Science Journal, 2010, 28(1): 49-55. |
[5] | ZHANG Yue-Jin, MENG Xiang-Hai, YANG Dong-Feng, XU Ling, ZHANG Xiao-Yan. Comparative Study on Chemical Constituents of Pinellia ternata(Thunb.) Breit.under Different Light Intensities[J]. Plant Science Journal, 2009, 27(5): 533-536. |
[6] | MU Hong-Ping, YE Wan-Hui, CHEN Yi-Zhu, ZHU Jian-Ling, CAO Hong-Lin. Photosynthesis and Growth of Ardisia crenata and Ardisia punctata under Different Phosphorus Nutrition Levels[J]. Plant Science Journal, 2008, 26(5): 514-519. |
[7] | CHEN Xiao-Feng, WANG Qing-Ya, CHEN Kai-Ning. Impacts of Different Light Intensity on Morphology and Structure of Potamogeton crispus[J]. Plant Science Journal, 2008, 26(2): 163-169. |
[8] | XU Kai-Yang, YE Wan-Hui, LI Guo-Min, LI Jing. Phenotypic Plasticity in Response to Light Intensity in the Invasive Species Alternanthera philoxeroides[J]. Plant Science Journal, 2005, 23(6): 560-563. |
[9] | LIU Bing-Qin, WANG Wan-Xian, SONG Chun-Lei, CAO Xiu-Yun, ZHOU Yi-Yong. Influences of Potamogeton crispus L.on Phosphorus Status in Lake Sediments[J]. Plant Science Journal, 2004, 22(5): 394-399. |
[10] | Wang Fengchun, Liu Mingyuan. BIOSYSTEMATIES OF TRIFOLIUM PRATENSE L.IN THE EAST MOUNTAINS IN HEILONGJIANG PROVINCE, CHINA[J]. Plant Science Journal, 1989, 7(4): 317-326. |