Advance Search
Ouyang JX,Li W,Cao Y. Preliminary study on factors driving arbuscular mycorrhizal fungi diversity with elevation in the South-Tibet River Basin[J]. Plant Science Journal,2024,42(1):34−42. DOI: 10.11913/PSJ.2095-0837.23087
Citation: Ouyang JX,Li W,Cao Y. Preliminary study on factors driving arbuscular mycorrhizal fungi diversity with elevation in the South-Tibet River Basin[J]. Plant Science Journal,2024,42(1):34−42. DOI: 10.11913/PSJ.2095-0837.23087

Preliminary study on factors driving arbuscular mycorrhizal fungi diversity with elevation in the South-Tibet River Basin

More Information
  • Received Date: September 11, 2023
  • Accepted Date: December 05, 2023
  • Available Online: June 24, 2023
  • Arbuscular mycorrhizal fungi (AMF) play a vital role in maintaining the functionality and stability of plateau wetland ecosystems. However, the diversity of AMF communities along elevational gradients and their response to construction processes in the South-Tibet River Basin remain unclear. In this study, we conducted a wetland plant community survey, measured the physicochemical properties of water in situ, and collected sediment samples for further analysis across a high elevational gradient (4 200 to 5 100 m) in the South-Tibet River Basin. Results revealed that Glomus was the dominant genus within the Qinghai-Tibet Plateau wetland ecosystem. However, its relative abundance varied greatly with elevation, showing a significant declining trend with increasing elevation. Differences in AMF community composition were primarily due to species replacement. Variance partitioning analysis showed that the contribution of environmental variables to the AMF diversity-elevation patterns mainly involved sediment and water factors, with a lesser contribution from plant factors. These findings suggest that the establishment of the AMF community in the wetland habitat of the South-Tibet River Basin is predominantly governed by deterministic processes at high elevational gradients, reflecting a unique model of AMF community construction in the Qinghai-Tibet Plateau. However, further validation of these results is warranted.

  • [1]
    Wang B,Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza,2006,16(5):299−363. doi: 10.1007/s00572-005-0033-6
    [2]
    Wang GW,Jin ZX,George TS,Feng G,Zhang L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J]. New Phytol,2023,238(6):2578−2593. doi: 10.1111/nph.18772
    [3]
    Li MH,Cai P,Hou SW,Cheng Z,Wu FY,et al. Degradation of soil arbuscular mycorrhizal fungal diversity and functionality accompanied by the aggravation of pepper Phytophthora blight in a facility shed in Southwest China[J]. Land Degrad Dev,2022,33(9):1337−1346. doi: 10.1002/ldr.4228
    [4]
    Grünfeld L,Skias G,Rillig MC,Veresoglou SD. Arbuscular mycorrhizal root colonization depends on the spatial distribution of the host plants[J]. Mycorrhiza,2022,32(5-6):387−395. doi: 10.1007/s00572-022-01087-0
    [5]
    Huang GM,Srivastava AK,Zou YN,Wu QS,Kuča K. Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts[J]. Symbiosis,2021,84(3):311−320. doi: 10.1007/s13199-021-00770-8
    [6]
    Andersen FØ,Andersen T. Effects of arbuscular mycorrhizae on biomass and nutrients in the aquatic plant Littorella uniflora[J]. Freshwater Biol,2006,51(9):1623−1633. doi: 10.1111/j.1365-2427.2006.01608.x
    [7]
    Xu ZY,Ban YH,Jiang YH,Zhang XL,Liu XY. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland:a review[J]. Pedosphere,2016,26(5):592−617. doi: 10.1016/S1002-0160(15)60067-4
    [8]
    吴松,隋心,张童,陈雨彤,朱道光,等. 湿地丛枝菌根真菌研究进展[J]. 国土与自然资源研究,2019(6):80−84.

    Wu S,Sui X,Zhang T,Chen YT,Zhu DG,et al. Research on the progress of AMF in wetland[J]. Territory & Natural Resources Study,2019(6):80−84.
    [9]
    Dolezal J,Dvorsky M,Kopecky M,Liancourt P,Hiiesalu I,et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya[J]. Sci Rep,2016,6:24881. doi: 10.1038/srep24881
    [10]
    Zhang B,Xue K,Zhou ST,Che RX,Du JQ,et al. Phosphorus mediates soil prokaryote distribution pattern along a small-scale elevation gradient in Noijin Kangsang Peak,Tibetan Plateau[J]. FEMS Microbiol Ecol,2019,95(6):fiz076. doi: 10.1093/femsec/fiz076
    [11]
    张倚浩,阎建忠,程先. 气候变化与人类活动对青藏高原湿地的影响研究进展[J]. 生态学报,2023,43(6):2180−2193.

    Zhang YH,Yan JZ,Cheng X. Advances in impact of climate change and human activities on wetlands on the Tibetan Plateau[J]. Acta Ecologica Sinica,2023,43(6):2180−2193.
    [12]
    赵魁义,王德斌,宋海远. 西藏高原沼泽的初步研究[J]. 自然资源,1981(2):14−21.
    [13]
    Wang N,Gao J,Zhang SQ,Wang GX. Variations in leaf and root stoichiometry of Nitraria tangutorum along aridity gradients in the Hexi Corridor,Northwest China[J]. Contemp Probl Ecol,2014,7(3):308−314. doi: 10.1134/S1995425514030123
    [14]
    Liu L,Hart MM,Zhang JL,Cai XB,Gai JP,et al. Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland[J]. FEMS Microbiol Ecol,2015,91(7):fiv078. doi: 10.1093/femsec/fiv078
    [15]
    Fierer N,McCain CM,Meir P,Zimmermann M,Rapp JM,et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology,2011,92(4):797−804. doi: 10.1890/10-1170.1
    [16]
    Singh D,Takahashi K,Adams JM. Elevational patterns in archaeal diversity on Mt. Fuji[J]. PLoS One,2012,7(9):e44494. doi: 10.1371/journal.pone.0044494
    [17]
    Bryant JA,Lamanna C,Morlon H,Kerkhoff AJ,Enquist BJ,Green JL. Microbes on mountainsides:contrasting elevational patterns of bacterial and plant diversity[J]. Proc Natl Acad Sci USA,2008,105(S1):11505−11511.
    [18]
    Hou EQ,Luo YQ,Kuang YW,Chen CR,Lu XK,et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nat Commun,2020,11(1):637. doi: 10.1038/s41467-020-14492-w
    [19]
    Öpik M,Vanatoa A,Vanatoa E,Moora M,Davison J,et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)[J]. New Phytol,2010,188(1):223−241. doi: 10.1111/j.1469-8137.2010.03334.x
    [20]
    Yang T,Adams JM,Shi Y,He JS,Jing X,et al. Soil fungal diversity in natural grasslands of the Tibetan Plateau:associations with plant diversity and productivity[J]. New Phytol,2017,215(2):756−765. doi: 10.1111/nph.14606
    [21]
    Hart MM,Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi[J]. New Phytol,2002,153(2):335−344. doi: 10.1046/j.0028-646X.2001.00312.x
    [22]
    Daniell TJ,Husband R,Fitter AH,Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops[J]. FEMS Microbiol Ecol,2001,36(2-3):203−209. doi: 10.1111/j.1574-6941.2001.tb00841.x
    [23]
    Ouyang JX,He YD,Yang B,Zhou JZ,Li W,Cao Y. Elevation,but not phosphorus,shapes arbuscular mycorrhizal fungal colonization of plateau wetland plants:a case study of the Qinghai-Tibet Plateau[J]. Glob Ecol Conserv,2023,46:e02611.
    [24]
    Li XL,Gai JP,Cai XB,Li XL,Christie P,et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient[J]. Mycorrhiza,2014,24(2):95−107. doi: 10.1007/s00572-013-0518-7
    [25]
    Gai JP,Tian H,Yang FY,Christie P,Li XL,Klironomos JN. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient[J]. Pedobiologia,2012,55(3):145−151. doi: 10.1016/j.pedobi.2011.12.004
    [26]
    Antoninka A,Reich PB,Johnson NC. Seven years of carbon dioxide enrichment,nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem[J]. New Phytol,2011,192(1):200−214. doi: 10.1111/j.1469-8137.2011.03776.x
    [27]
    Fan DD,Ji MK,Wu JS,Chen H,Jia HZ,et al. Grazing does not influence soil arbuscular mycorrhizal fungal diversity,but increases their interaction complexity with plants in dry grasslands on the Tibetan Plateau[J]. Ecol Indic,2023,148:110065. doi: 10.1016/j.ecolind.2023.110065
    [28]
    Vályi K,Mardhiah U,Rillig MC,Hempel S. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi[J]. ISME J,2016,10(10):2341−2351. doi: 10.1038/ismej.2016.46
    [29]
    Shi GX,Yao BQ,Liu YJ,Jiang SJ,Wang WY,et al. The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai-Tibet Plateau[J]. Appl Soil Ecol,2017,121:31−40. doi: 10.1016/j.apsoil.2017.09.010
    [30]
    Cheng YK,Liu X,Lu YW,Chen F,Zhou XH,et al. Long-term nitrogen fertilization alters phylogenetic structure of arbuscular mycorrhizal fungal community in plant roots across fine spatial scales[J]. Plant Soil,2023,483(1-2):427−440. doi: 10.1007/s11104-022-05753-2
    [31]
    Egan C,Li DW,Klironomos J. Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions[J]. Fungal Ecol,2014,12:26−31. doi: 10.1016/j.funeco.2014.06.004
    [32]
    Johnson NC. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales[J]. New Phytol,2010,185(3):631−647. doi: 10.1111/j.1469-8137.2009.03110.x
    [33]
    Řezáčová V,Slavíková R,Konvalinková T,Zemková L,Řezáč M,et al. Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows[J]. Mycorrhiza,2019,29(6):567−579. doi: 10.1007/s00572-019-00921-2
    [34]
    Lin GG,McCormack ML,Guo DL. Arbuscular mycorrhizal fungal effects on plant competition and community structure[J]. J Ecol,2015,103(5):1224−1232. doi: 10.1111/1365-2745.12429
    [35]
    Davison J,Moora M,Semchenko M,Adenan SB,Ahmed T,et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi[J]. New Phytol,2021,231(2):763−776. doi: 10.1111/nph.17240
    [36]
    Sepp SK,Davison J,Jairus T,Vasar M,Moora M,et al. Non-random association patterns in a plant-mycorrhizal fungal network reveal host-symbiont specificity[J]. Mol Ecol,2019,28(2):365−378. doi: 10.1111/mec.14924
    [37]
    Hodge A,Fitter AH. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proc Natl Acad Sci USA,2010,107(31):13754−13759. doi: 10.1073/pnas.1005874107
    [38]
    Wolfe BE,Mummey DL,Rillig MC,Klironomos JN. Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community[J]. Mycorrhiza,2007,17(3):175−183. doi: 10.1007/s00572-006-0089-y
    [39]
    Daleo P,Fanjul E,Casariego AM,Silliman BR,Bertness MD,Iribarne O. Ecosystem engineers activate mycorrhizal mutualism in salt marshes[J]. Ecol Lett,2007,10(10):902−908. doi: 10.1111/j.1461-0248.2007.01082.x
    [40]
    Ren LJ,Jeppesen E,He D,Wang JJ,Liboriussen L,et al. pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly[J]. Appl Environ Microbiol,2015,81(9):3104−3114. doi: 10.1128/AEM.04042-14
    [41]
    Wang SG,Dai DW,Song S,Diao XJ,Ma LM. Arbuscular mycorrhizal (AM) status in urban wetland plants and its impact factors[J]. Aquat Bot,2018,150:33−45. doi: 10.1016/j.aquabot.2018.07.002
    [42]
    Muthukumar T,Udaiyan K,Shanmughavel P. Mycorrhiza in sedges:an overview[J]. Mycorrhiza,2004,14(2):65−77. doi: 10.1007/s00572-004-0296-3
    [43]
    Orfanoudakis M,Wheeler CT,Hooker JE. Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa[J]. Mycorrhiza,2010,20(2):117−126. doi: 10.1007/s00572-009-0271-0
    [44]
    Mommer L,Kirkegaard J,van Ruijven J. Root-root interactions:towards a rhizosphere framework[J]. Trends Plant Sci,2016,31(3):209−217.
  • Related Articles

    [1]Chen Yao, Zhang Zhi-Peng, Zhang Zhao, Zhang Yang, Xie Cai-Xiang, Xu Shuo. Effect of soil factors on the content of chemical components in Phellodendri Amurensis Cortex[J]. Plant Science Journal, 2019, 37(6): 797-807. DOI: 10.11913/PSJ.2095-0837.2019.60797
    [2]ZHANG Run-Hua, LI Zhi-Guo, LIU Xu-Dong, WANG Bin-Cai, WANG Ai-Hua, HUANG Xing-Xue, ZHOU Guo-Lin, QIAN Yun-Guo. Impact of Cultivation Change from Open Field to Greenhouse on Heavy Metal Contents and Fractions of Soil[J]. Plant Science Journal, 2016, 34(4): 575-582. DOI: 10.11913/PSJ.2095-0837.2016.40575
    [3]LIU Hai-Yan, HUANG Cai-Mei, ZHOU Sheng-Yong, HUANG Li-Hua, ZOU Tian-Cai. Study on the Content Changes of Zinc and Selenium in Tea and Differences in the Planting Soil[J]. Plant Science Journal, 2015, 33(2): 237-243. DOI: 10.11913/PSJ.2095-0837.2015.20237
    [4]OUYANG Zheng-Rong, WEN Xiao-Bin, GENG Ya-Hong, MEI Hong, HU Hong-Jun, ZHANG Gui-Yan, LI Ye-Guang. The Effects of Light Intensities, Temperatures, pH and Salinities on Photosynthesis of Chlorella[J]. Plant Science Journal, 2010, 28(1): 49-55.
    [5]ZHANG Yue-Jin, MENG Xiang-Hai, YANG Dong-Feng, XU Ling, ZHANG Xiao-Yan. Comparative Study on Chemical Constituents of Pinellia ternata(Thunb.) Breit.under Different Light Intensities[J]. Plant Science Journal, 2009, 27(5): 533-536.
    [6]MU Hong-Ping, YE Wan-Hui, CHEN Yi-Zhu, ZHU Jian-Ling, CAO Hong-Lin. Photosynthesis and Growth of Ardisia crenata and Ardisia punctata under Different Phosphorus Nutrition Levels[J]. Plant Science Journal, 2008, 26(5): 514-519.
    [7]CHEN Xiao-Feng, WANG Qing-Ya, CHEN Kai-Ning. Impacts of Different Light Intensity on Morphology and Structure of Potamogeton crispus[J]. Plant Science Journal, 2008, 26(2): 163-169.
    [8]XU Kai-Yang, YE Wan-Hui, LI Guo-Min, LI Jing. Phenotypic Plasticity in Response to Light Intensity in the Invasive Species Alternanthera philoxeroides[J]. Plant Science Journal, 2005, 23(6): 560-563.
    [9]LIU Bing-Qin, WANG Wan-Xian, SONG Chun-Lei, CAO Xiu-Yun, ZHOU Yi-Yong. Influences of Potamogeton crispus L.on Phosphorus Status in Lake Sediments[J]. Plant Science Journal, 2004, 22(5): 394-399.
    [10]Wang Fengchun, Liu Mingyuan. BIOSYSTEMATIES OF TRIFOLIUM PRATENSE L.IN THE EAST MOUNTAINS IN HEILONGJIANG PROVINCE, CHINA[J]. Plant Science Journal, 1989, 7(4): 317-326.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return