Citation: | Liu ZL,Sun MX,Huang XR. Advances in epigenetic regulation of plant male germline cell development[J]. Plant Science Journal,2023,41(6):789−799. DOI: 10.11913/PSJ.2095-0837.23132 |
Male germline cells in plants undergo epigenetic reprogramming mediated by chromatin remodeling, histone modification, DNA methylation, and small RNA during development. Many genes are involved in shaping the epigenetic state of male germline cells and regulating plant male fertility. Recent advances in multi-omics techniques have helped elucidate specific epigenetic profiles of male germline cells at different stages of development. In this review, we summarize recent advances in epigenetic dynamics and molecular mechanisms involved in the development of male germline cells in plants and discuss prospects for future studies on the epigenetic regulation of this developmental process.
[1] |
Hackenberg D,Twell D. The evolution and patterning of male gametophyte development[J]. Curr Top Dev Biol,2019,131:257−298.
|
[2] |
Hafidh S,Honys D. Reproduction multitasking:the male gametophyte[J]. Annu Rev Plant Biol,2021,72:581−614. doi: 10.1146/annurev-arplant-080620-021907
|
[3] |
Houben A,Kumke K,Nagaki K,Hause G. CENH3 distribution and differential chromatin modifications during pollen development in rye (Secale cereale L. )[J]. Chromosome Res,2011,19 (4):471−480. doi: 10.1007/s10577-011-9207-6
|
[4] |
Calarco JP,Borges F,Donoghue MTA,van Ex F,Jullien PE,et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA[J]. Cell,2012,151 (1):194−205. doi: 10.1016/j.cell.2012.09.001
|
[5] |
Pandey P,Houben A,Kumlehn J,Melzer M,Rutten T. Chromatin alterations during pollen development in Hordeum vulgare[J]. Cytogenet Genome Res,2013,141 (1):50−57. doi: 10.1159/000351211
|
[6] |
Hsieh PH,He SB,Buttress T,Gao HB,Couchman M,et al. Arabidopsis male sexual lineage exhibits more robust maintenance of CG methylation than somatic tissues[J]. Proc Natl Acad Sci USA,2016,113 (52):15132−15137. doi: 10.1073/pnas.1619074114
|
[7] |
Walker J,Gao HB,Zhang JY,Aldridge B,Vickers M,et al. Sexual‐lineage‐specific DNA methylation regulates meiosis in Arabidopsis[J]. Nat Genet,2018,50 (1):130−137. doi: 10.1038/s41588-017-0008-5
|
[8] |
Buttress T,He SB,Wang L,Zhou SL,Saalbach G,et al. Histone H2B.8 compacts flowering plant sperm through chromatin phase separation[J]. Nature,2022,611 (7936):614−622. doi: 10.1038/s41586-022-05386-6
|
[9] |
Huang XR,Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes[J]. Plant Cell,2022,34 (8):2989−3005. doi: 10.1093/plcell/koac136
|
[10] |
Long JC,Walker J,She WJ,Aldridge B,Gao HB,et al. Nurse cell-derived small RNAs define paternal epigenetic inheritance in Arabidopsis[J]. Science,2021,373 (6550):eabh0556. doi: 10.1126/science.abh0556
|
[11] |
Zhao YS,Wang SY,Wu WY,Li L,Jiang T,et al. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis[J]. Nat Commun,2018,9 (1):5011. doi: 10.1038/s41467-018-07429-x
|
[12] |
Borges F,Gomes G,Gardner R,Moreno N,McCormick S,et al. Comparative transcriptomics of Arabidopsis sperm cells[J]. Plant Physiol,2008,148 (2):1168−1181. doi: 10.1104/pp.108.125229
|
[13] |
Borg M,Brownfield L,Khatab H,Sidorova A,Lingaya M,et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis[J]. Plant Cell,2011,23 (2):534−549. doi: 10.1105/tpc.110.081059
|
[14] |
Duan CG,Zhu JK,Cao XF. Retrospective and perspective of plant epigenetics in China[J]. J Genet Genomics,2018,45 (11):621−638. doi: 10.1016/j.jgg.2018.09.004
|
[15] |
Henikoff S,Furuyama T,Ahmad K. Histone variants,nucleosome assembly and epigenetic inheritance[J]. Trends Genet,2004,20 (7):320−326. doi: 10.1016/j.tig.2004.05.004
|
[16] |
Borg M,Berger F. Chromatin remodelling during male gametophyte development[J]. Plant J,2015,83 (1):177−188. doi: 10.1111/tpj.12856
|
[17] |
He SB,Vickers M,Zhang JY,Feng XQ. Natural depletion of histone H1 in sex cells causes DNA demethylation,heterochromatin decondensation and transposon activation[J]. eLife,2019,8:e42530. doi: 10.7554/eLife.42530
|
[18] |
Tanaka I,Ono K,Fukuda T. The developmental fate of angiosperm pollen is associated with a preferential decrease in the level of histone H1 in the vegetative nucleus[J]. Planta,1998,206 (4):561−569. doi: 10.1007/s004250050433
|
[19] |
Banani SF,Lee HO,Hyman AA,Rosen MK. Biomolecular condensates:organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol,2017,18 (5):285−298. doi: 10.1038/nrm.2017.7
|
[20] |
Uversky VN. Intrinsically disordered proteins in overcrowded milieu:membrane-less organelles,phase separation,and intrinsic disorder[J]. Curr Opin Struct Biol,2017,44:18−30. doi: 10.1016/j.sbi.2016.10.015
|
[21] |
Larson AG,Elnatan D,Keenen MM,Trnka MJ,Johnston JB,et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin[J]. Nature,2017,547 (7662):236−240. doi: 10.1038/nature22822
|
[22] |
Strom AR,Emelyanov AV,Mir M,Fyodorov DV,Darzacq X,et al. Phase separation drives heterochromatin domain formation[J]. Nature,2017,547 (7662):241−245. doi: 10.1038/nature22989
|
[23] |
Okada T,Endo M,Singh MB,Bhalla PL. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3[J]. Plant J,2005,44 (4):557−568. doi: 10.1111/j.1365-313X.2005.02554.x
|
[24] |
Stroud H,Otero S,Desvoyes B,Ramírez-Parra E,Jacobsen SE,et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2012,109 (14):5370−5375. doi: 10.1073/pnas.1203145109
|
[25] |
Wollmann H,Holec S,Alden K,Clarke ND,Jacques PÉ,Berger F. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome[J]. PLoS Genet,2012,8 (5):e1002658. doi: 10.1371/journal.pgen.1002658
|
[26] |
Ingouff M,Hamamura Y,Gourgues M,Higashiyama T,Berger F. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants[J]. Curr Biol,2007,17 (12):1032−1037. doi: 10.1016/j.cub.2007.05.019
|
[27] |
Borg M,Jacob Y,Susaki D,LeBlanc C,Buendía D,et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin[J]. Nat Cell Biol,2020,22 (6):621−629. doi: 10.1038/s41556-020-0515-y
|
[28] |
Borg M,Rutley N,Kagale S,Hamamura Y,Gherghinoiu M,et al. An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis[J]. Plant Cell,2014,26 (5):2098−2113. doi: 10.1105/tpc.114.124743
|
[29] |
Russell SD,Gou XP,Wong CE,Wang XK,Yuan T,et al. Genomic profiling of rice sperm cell transcripts reveals conserved and distinct elements in the flowering plant male germ lineage[J]. New Phytol,2012,195 (3):560−573. doi: 10.1111/j.1469-8137.2012.04199.x
|
[30] |
Anderson SN,Johnson CS,Jones DS,Conrad LJ,Gou XP,et al. Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing:evidence for distinct sex-dependent chromatin and epigenetic states before fertilization[J]. Plant J,2013,76 (5):729−741. doi: 10.1111/tpj.12336
|
[31] |
Black BE,Bassett EA. The histone variant CENP-A and centromere specification[J]. Curr Opin Cell Biol,2008,20 (1):91−100. doi: 10.1016/j.ceb.2007.11.007
|
[32] |
Henikoff S,Furuyama T. The unconventional structure of centromeric nucleosomes[J]. Chromosoma,2012,121 (4):341−352. doi: 10.1007/s00412-012-0372-y
|
[33] |
Aw SJ,Hamamura Y,Chen Z,Schnittger A,Berger F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis[J]. Development,2010,137 (16):2683−2690. doi: 10.1242/dev.052928
|
[34] |
Ravi M,Chan SWL. Haploid plants produced by centromere-mediated genome elimination[J]. Nature,2010,464 (7288):615−618. doi: 10.1038/nature08842
|
[35] |
Liu CY,Lu FL,Cui X,Cao XF. Histone methylation in higher plants[J]. Annu Rev Plant Biol,2010,61:395−420. doi: 10.1146/annurev.arplant.043008.091939
|
[36] |
Li W,Liu H,Cheng ZJ,Su YH,Han HN,et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genet,2011,7 (8):e1002243. doi: 10.1371/journal.pgen.1002243
|
[37] |
Okada T,Singh MB,Bhalla PL. Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen[J]. Plant Mol Biol,2006,62 (4):503−512.
|
[38] |
Sano Y,Tanaka I. Distinct localization of histone H3 methylation in the vegetative nucleus of lily pollen[J]. Cell Biol Int,2010,34 (3):253−259. doi: 10.1042/CBI20090124
|
[39] |
Cartagena JA,Matsunaga S,Seki M,Kurihara D,Yokoyama M,et al. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen[J]. Dev Biol,2008,315 (2):355−368. doi: 10.1016/j.ydbio.2007.12.016
|
[40] |
Pillot M,Autran D,Leblanc O,Grimanelli D. A role for CHROMOMETHYLASE3 in mediating transposon and euchromatin silencing during egg cell reprogramming in Arabidopsis[J]. Plant Signal Behav,2010,5 (10):1167−1170. doi: 10.4161/psb.5.10.11905
|
[41] |
Pinon V,Yao XZ,Dong AW,Shen WH. SDG2-mediated H3K4me3 is crucial for chromatin condensation and mitotic division during male gametogenesis in Arabidopsis[J]. Plant Physiol,2017,174 (2):1205−1215. doi: 10.1104/pp.17.00306
|
[42] |
Zhu DL,Wen Y,Yao WY,Zheng HY,Zhou SX,et al. Distinct chromatin signatures in the Arabidopsis male gametophyte[J]. Nat Genet,2023,55 (4):706−720. doi: 10.1038/s41588-023-01329-7
|
[43] |
Johnson L,Mollah S,Garcia BA,Muratore TL,Shabanowitz J,et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications[J]. Nucl Acids Res,2004,32 (22):6511−6518. doi: 10.1093/nar/gkh992
|
[44] |
Zheng BL,He H,Zheng YH,Wu WY,McCormick S. An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana[J]. PLoS Genet,2014,10 (7):e1004421. doi: 10.1371/journal.pgen.1004421
|
[45] |
Sarnowski TJ,Ríos G,Jásik J,Świezewski S,Kaczanowski S,et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development[J]. Plant Cell,2005,17 (9):2454−2472. doi: 10.1105/tpc.105.031203
|
[46] |
Roberts CWM,Orkin SH. The SWI/SNF complex–chromatin and cancer[J]. Nat Rev Cancer,2004,4 (2):133−142. doi: 10.1038/nrc1273
|
[47] |
Genau AC,Li ZH,Renzaglia KS,Fernandez Pozo N,Nogué F,et al. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants[J]. Plant Reprod,2021,34 (2):149−173. doi: 10.1007/s00497-021-00409-0
|
[48] |
Alver BH,Kim KH,Lu P,Wang XF,Manchester HE,et al. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers[J]. Nat Commun,2017,8 (1):14648. doi: 10.1038/ncomms14648
|
[49] |
Wilson BG,Wang X,Shen XH,McKenna ES,Lemieux ME,et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation[J]. Cancer Cell,2010,18 (4):316−328. doi: 10.1016/j.ccr.2010.09.006
|
[50] |
Pereman I,Mosquna A,Katz A,Wiedemann G,Lang D,et al. The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens[J]. Biochim Biophys Acta (BBA)-Gene Regul Mech,2016,1859 (7):860−870. doi: 10.1016/j.bbagrm.2016.05.004
|
[51] |
Zemach A,Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex[J]. Curr Biol,2010,20 (17):R780−R785. doi: 10.1016/j.cub.2010.07.007
|
[52] |
Smith ZD,Meissner A. DNA methylation:roles in mammalian development[J]. Nat Rev Genet,2013,14 (3):204−220. doi: 10.1038/nrg3354
|
[53] |
Zhang HM,Lang ZB,Zhu JK. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol,2018,19 (8):489−506. doi: 10.1038/s41580-018-0016-z
|
[54] |
Law JA,Jacobsen SE. Establishing,maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet,2010,11 (3):204−220. doi: 10.1038/nrg2719
|
[55] |
Huang K,Wu XX,Fang CL,Xu ZG,Zhang HW,et al. Pol Ⅳ and RDR2:a two‐RNA‐polymerase machine that produces double‐stranded RNA[J]. Science,2021,374 (6575):1579−1586. doi: 10.1126/science.abj9184
|
[56] |
Matzke MA,Mosher RA. RNA-directed DNA methylation:an epigenetic pathway of increasing complexity[J]. Nat Rev Genet,2014,15 (6):394−408. doi: 10.1038/nrg3683
|
[57] |
Lindroth AM,Cao XF,Jackson JP,Zilberman D,McCallum CM,et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science,2001,292 (5524):2077−2080. doi: 10.1126/science.1059745
|
[58] |
Stroud H,Do T,Du JM,Zhong XH,Feng SH,et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis[J]. Nat Struct Mol Biol,2014,21 (1):64−72. doi: 10.1038/nsmb.2735
|
[59] |
Zemach A,Kim MY,Hsieh PH,Coleman-Derr D,Eshed-Williams L,et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin[J]. Cell,2013,153 (1):193−205. doi: 10.1016/j.cell.2013.02.033
|
[60] |
Du JM,Zhong XH,Bernatavichute YV,Stroud H,Feng SH,et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants[J]. Cell,2012,151 (1):167−180. doi: 10.1016/j.cell.2012.07.034
|
[61] |
Jackson JP,Lindroth AM,Cao XF,Jacobsen SE. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase[J]. Nature,2002,416 (6880):556−560. doi: 10.1038/nature731
|
[62] |
Malagnac F,Bartee L,Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation[J]. EMBO J,2002,21 (24):6842−6852. doi: 10.1093/emboj/cdf687
|
[63] |
Jackson JP,Johnson L,Jasencakova Z,Zhang X,PerezBurgos L,et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana[J]. Chromosoma,2004,112 (6):308−315. doi: 10.1007/s00412-004-0275-7
|
[64] |
Ebbs ML,Bartee L,Bender J. H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases[J]. Mol Cell Biol,2005,25 (23):10507−10515. doi: 10.1128/MCB.25.23.10507-10515.2005
|
[65] |
Ebbs ML,Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase[J]. Plant Cell,2006,18 (5):1166−1176. doi: 10.1105/tpc.106.041400
|
[66] |
Du JM,Johnson LM,Groth M,Feng SH,Hale CJ,et al. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE[J]. Mol Cell,2014,55 (3):495−504. doi: 10.1016/j.molcel.2014.06.009
|
[67] |
Choi Y,Gehring M,Johnson L,Hannon M,Harada JJ,et al. DEMETER,a DNA glycosylase domain protein,is required for endosperm gene imprinting and seed viability in Arabidopsis[J]. Cell,2002,110 (1):33−42. doi: 10.1016/S0092-8674(02)00807-3
|
[68] |
Gong ZZ,Morales‐Ruiz T,Ariza RR,Roldán‐Arjona T,David L,et al. ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylase/lyase[J]. Cell,2002,111 (6):803−814. doi: 10.1016/S0092-8674(02)01133-9
|
[69] |
Gehring M,Huh JH,Hsieh TF,Penterman J,Choi Y,et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self‐imprinting by allele‐specific demethylation[J]. Cell,2006,124 (3):495−506. doi: 10.1016/j.cell.2005.12.034
|
[70] |
Penterman J,Zilberman D,Huh JH,Ballinger T,Henikoff S,Fischer RL. DNA demethylation in the Arabidopsis genome[J]. Proc Natl Acad Sci USA,2007,104 (16):6752−6757. doi: 10.1073/pnas.0701861104
|
[71] |
Ortega-Galisteo AP,Morales-Ruiz T,Ariza RR,Roldán-Arjona T. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks[J]. Plant Mol Biol,2008,67 (6):671−681. doi: 10.1007/s11103-008-9346-0
|
[72] |
Zhu JK. Active DNA demethylation mediated by DNA glycosylases[J]. Annu Rev Genet,2009,43:143−166. doi: 10.1146/annurev-genet-102108-134205
|
[73] |
Pikaard CS,Scheid OM. Epigenetic regulation in plants[J]. Cold Spring Harb Perspect Biol,2014,6 (12):a019315. doi: 10.1101/cshperspect.a019315
|
[74] |
Seisenberger S,Peat JR,Hore TA,Santos F,Dean W,Reik W. Reprogramming DNA methylation in the mammalian life cycle:building and breaking epigenetic barriers[J]. Philos Trans Roy Soc B:Biol Sci,2013,368 (1609):20110330. doi: 10.1098/rstb.2011.0330
|
[75] |
Tang WWC,Kobayashi T,Irie N,Dietmann S,Surani MA. Specification and epigenetic programming of the human germ line[J]. Nat Rev Genet,2016,17 (10):585−600. doi: 10.1038/nrg.2016.88
|
[76] |
Vielle-Calzada JP. Linking stem cells to germ cells[J]. Science,2017,356 (6336):378−379. doi: 10.1126/science.aan2734
|
[77] |
Schmidt A,Schmid MW,Grossniklaus U. Plant germline formation:common concepts and developmental flexibility in sexual and asexual reproduction[J]. Development,2015,142 (2):229−241. doi: 10.1242/dev.102103
|
[78] |
Kawashima T,Berger F. Epigenetic reprogramming in plant sexual reproduction[J]. Nat Rev Genet,2014,15 (9):613−624. doi: 10.1038/nrg3685
|
[79] |
Ibarra CA,Feng XQ,Schoft VK,Hsieh TF,Uzawa R,et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes[J]. Science,2012,337 (6100):1360−1364. doi: 10.1126/science.1224839
|
[80] |
Huettel B,Kanno T,Daxinger L,Aufsatz W,Matzke AJM,et al. Endogenous targets of RNA-directed DNA methylation and Pol Ⅳ in Arabidopsis[J]. EMBO J,2006,25 (12):2828−2836. doi: 10.1038/sj.emboj.7601150
|
[81] |
He SB,Feng XQ. DNA methylation dynamics during germline development[J]. J Integr Plant Biol,2022,64 (12):2240−2251. doi: 10.1111/jipb.13422
|
[82] |
Patel P,Mathioni S,Kakrana A,Shatkay H,Meyers BC. Reproductive phasiRNAs in grasses are compositionally distinct from other classes of small RNAs[J]. New Phytol,2018,220 (3):851−864. doi: 10.1111/nph.15349
|
[83] |
Wu WY,Zheng BL. Intercellular delivery of small RNAs in plant gametes[J]. New Phytol,2019,224 (1):86−90. doi: 10.1111/nph.15854
|
[84] |
Honys D,Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis[J]. Genome Biol,2004,5 (11):R85. doi: 10.1186/gb-2004-5-11-r85
|
[85] |
Robert GD,Said H,David T,Hugh GD. Small RNA pathways are present and functional in the angiosperm male gametophyte[J]. Mol Plant,2009,2 (3):500−512. doi: 10.1093/mp/ssp003
|
[86] |
Grant-Downton R,Le Trionnaire G,Schmid R,Rodriguez-Enriquez J,Hafidh S,et al. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana[J]. BMC Genom,2009,10 (1):643. doi: 10.1186/1471-2164-10-643
|
[87] |
Achkar NP,Cambiagno DA,Manavella PA. miRNA biogenesis:a dynamic pathway[J]. Trends Plant Sci,2016,21 (12):1034−1044. doi: 10.1016/j.tplants.2016.09.003
|
[88] |
Matzke MA,Kanno T,Matzke AJM. RNA-directed DNA methylation:the evolution of a complex epigenetic pathway in flowering plants[J]. Annu Rev Plant Biol,2015,66:243−267. doi: 10.1146/annurev-arplant-043014-114633
|
[89] |
Feng XQ,Zilberman D,Dickinson H. A conversation across generations:soma-germ cell crosstalk in plants[J]. Dev Cell,2013,24 (3):215−225. doi: 10.1016/j.devcel.2013.01.014
|
[90] |
Gómez JF,Talle B,Wilson ZA. Anther and pollen development:a conserved developmental pathway[J]. J Integr Plant Biol,2015,57 (11):876−891. doi: 10.1111/jipb.12425
|
[91] |
Slotkin RK,Vaughn M,Borges F,Tanurdžić M,Becker JD,et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J]. Cell,2009,136 (3):461−472. doi: 10.1016/j.cell.2008.12.038
|
[92] |
Mamun EA,Cantrill LC,Overall RL,Sutton BG. Cellular organisation and differentiation of organelles in pre-meiotic rice anthers[J]. Cell Biol Int,2005,29 (9):792−802. doi: 10.1016/j.cellbi.2005.05.009
|
[93] |
Sager R,Lee JY. Plasmodesmata in integrated cell signalling:insights from development and environmental signals and stresses[J]. J Exp Bot,2014,65 (22):6337−6358. doi: 10.1093/jxb/eru365
|
[94] |
Smith LM,Pontes O,Searle I,Yelina N,Yousafzai FK,et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis[J]. Plant Cell,2007,19 (5):1507−1521. doi: 10.1105/tpc.107.051540
|
[95] |
Zhou M,Palanca AMS,Law JA. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family[J]. Nat Genet,2018,50 (6):865−873. doi: 10.1038/s41588-018-0115-y
|
[96] |
Zhou X,Huang K,Teng C,Abdelgawad A,Batish M,et al. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers[J]. New Phytol,2022,235 (2):488−501. doi: 10.1111/nph.18167
|
[97] |
Zhai JX,Zhang H,Arikit S,Huang K,Nan GL,et al. Spatiotemporally dynamic,cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers[J]. Proc Natl Acad Sci USA,2015,112 (10):3146−3151. doi: 10.1073/pnas.1418918112
|
[98] |
Fei QL,Yang L,Liang WQ,Zhang DB,Meyers BC. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways[J]. J Exp Bot,2016,67 (21):6037−6049. doi: 10.1093/jxb/erw361
|
[99] |
Kakrana A,Mathioni SM,Huang K,Hammond R,Vandivier L,et al. Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots[J]. Genome Res,2018,28 (9):1333−1344. doi: 10.1101/gr.228163.117
|
[100] |
Ono S,Liu H,Tsuda K,Fukai E,Tanaka K,et al. EAT1 transcription factor,a non-cell-autonomous regulator of pollen production,activates meiotic small RNA biogenesis in rice anther tapetum[J]. PLoS Genet,2018,14 (2):e1007238. doi: 10.1371/journal.pgen.1007238
|
[101] |
Xia R,Chen CJ,Pokhrel S,Ma WQ,Huang K,et al. 24-nt reproductive phasiRNAs are broadly present in angiosperms[J]. Nat Commun,2019,10 (1):627. doi: 10.1038/s41467-019-08543-0
|
[102] |
Johnson C,Kasprzewska A,Tennessen K,Fernandes J,Nan GL,et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice[J]. Genome Res,2009,19 (8):1429−1440. doi: 10.1101/gr.089854.108
|
[103] |
Song XW,Li PC,Zhai JX,Zhou M,Ma LJ,et al. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis[J]. Plant J,2012,69 (3):462−474. doi: 10.1111/j.1365-313X.2011.04805.x
|
[104] |
Teng C,Zhang H,Hammond R,Huang K,Meyers BC,et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize[J]. Nat Commun,2020,11 (1):2912. doi: 10.1038/s41467-020-16634-6
|
[105] |
Liu YL,Teng C,Xia R,Meyers BC. PhasiRNAs in plants:their biogenesis,genic sources,and roles in stress responses,development,and reproduction[J]. Plant Cell,2020,32 (10):3059−3080. doi: 10.1105/tpc.20.00335
|
[106] |
Zhang M,Ma XX,Wang CY,Li Q,Meyers BC,et al. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers[J]. New Phytol,2021,229 (5):2984−2997. doi: 10.1111/nph.17060
|
[107] |
Zhou M,Coruh C,Xu GH,Martins LM,Bourbousse C,et al. The CLASSY family controls tissue-specific DNA methylation patterns in Arabidopsis[J]. Nat Commun,2022,13 (1):244. doi: 10.1038/s41467-021-27690-x
|
[108] |
Lippman Z,Gendrel AV,Black M,Vaughn MW,Dedhia N,et al. Role of transposable elements in heterochromatin and epigenetic control[J]. Nature,2004,430 (6998):471−476. doi: 10.1038/nature02651
|
[109] |
Creasey KM,Zhai JX,Borges F,van Ex F,Regulski M,et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis[J]. Nature,2014,508 (7496):411−415. doi: 10.1038/nature13069
|
[110] |
Schoft VK,Chumak N,Choi Y,Hannon M,Garcia-Aguilar M,et al. Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte[J]. Proc Natl Acad Sci USA,2011,108 (19):8042−8047. doi: 10.1073/pnas.1105117108
|
[111] |
Martínez G,Panda K,Köhler C,Slotkin RK. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell[J]. Nat Plants,2016,2 (4):16030. doi: 10.1038/nplants.2016.30
|
[112] |
Borges F,Pereira PA,Slotkin RK,Martienssen RA,Becker JD. MicroRNA activity in the Arabidopsis male germline[J]. J Exp Bot,2011,62 (5):1611−1620. doi: 10.1093/jxb/erq452
|
[113] |
Palatnik JF,Wollmann H,Schommer C,Schwab R,Boisbouvier J,et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Dev Cell,2007,13 (1):115−125. doi: 10.1016/j.devcel.2007.04.012
|
[114] |
Allen RS,Li JY,Alonso-Peral MM,White RG,Gubler F,et al. MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects[J]. Silence,2010,1 (1):18. doi: 10.1186/1758-907X-1-18
|
[1] | Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282 |
[2] | Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140 |
[3] | Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152 |
[4] | Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503 |
[5] | ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487 |
[6] | CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394 |
[7] | SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346. |
[8] | CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353 |
[9] | He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588. |
[10] | CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266. |