Advance Search
Zhao Y,Zheng BB,Zhang RX,Sun JL,Han YP. Advances in mechanisms of anthocyanin transport in fruit[J]. Plant Science Journal,2023,41(6):781−788. DOI: 10.11913/PSJ.2095-0837.23145
Citation: Zhao Y,Zheng BB,Zhang RX,Sun JL,Han YP. Advances in mechanisms of anthocyanin transport in fruit[J]. Plant Science Journal,2023,41(6):781−788. DOI: 10.11913/PSJ.2095-0837.23145

Advances in mechanisms of anthocyanin transport in fruit

Funds: This work was supported by grants from the National Natural Science Foundation of China (32272687, 32202460), Hubei Provincial Natural Science Foundation (2022CFB932) and China Agriculture Research System (CARS-30).
More Information
  • Received Date: May 21, 2023
  • Revised Date: June 23, 2023
  • Available Online: June 24, 2023
  • Anthocyanin, a natural water-soluble pigment, influences various fruit quality traits, including visual appearance and nutritional value. The biosynthesis of anthocyanin occurs through a series of enzymatic reactions in the endoplasmic reticulum, followed by transport to the vacuole for storage. Considerable research has elucidated the biosynthesis pathway and transcriptional regulation of anthocyanin over the past several decades. Moreover, key structural and regulatory genes participating in the pathway have been characterized in a variety of fruit species. However, the molecular mechanisms underlying the transmembrane transport of anthocyanin after synthesis remain unclear. Here, we review current progress on anthocyanin transport and discuss the three main transport models: glutathione S-transferase, membrane transporters, and vesicle trafficking. Despite numerous hypotheses, various questions concerning the dynamic transport and aggregation of anthocyanin in the vacuole remain to be answered. Understanding the molecular mechanisms and regulatory networks of anthocyanin transport will not only expand our knowledge regarding the anthocyanin metabolic pathway, but also provide a theoretical basis and molecular tools for improving fruit quality traits in breeding programs.

  • [1]
    Ogata J,Kanno Y,Itoh Y,Tsugawa H,Suzuki M. Anthocyanin biosynthesis in roses[J]. Nature,2005,435 (7043):757−758. doi: 10.1038/nature435757a
    [2]
    Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends Plant Sci,2013,18 (9):477−483. doi: 10.1016/j.tplants.2013.06.003
    [3]
    Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics,biochemistry,cell biology,and biotechnology[J]. Plant Physiol,2001,126 (2):485−493. doi: 10.1104/pp.126.2.485
    [4]
    Gould KS,Dudle DA,Neufeld HS. Why some stems are red:cauline anthocyanins shield photosystem Ⅱ against high light stress[J]. J Exp Bot,2010,61 (10):2707−2717. doi: 10.1093/jxb/erq106
    [5]
    Stintzing FC,Carle R. Functional properties of anthocyanins and betalains in plants,food,and in human nutrition[J]. Trends Food Sci Technol,2004,15 (1):19−38. doi: 10.1016/j.jpgs.2003.07.004
    [6]
    Tsuda T. Dietary anthocyanin-rich plants:biochemical basis and recent progress in health benefits studies[J]. Mol Nutr Food Res,2012,56 (1):159−170. doi: 10.1002/mnfr.201100526
    [7]
    He Y,Hu YF,Jiang XW,Chen TF,Ma YT,et al. Cyanidin-3-O-glucoside inhibits the UVB-induced ROS/COX-2 pathway in HaCaT cells[J]. J Photochem Photobiol B:Biol,2017,177:24−31. doi: 10.1016/j.jphotobiol.2017.10.006
    [8]
    Pratheeshkumar P,Son YO,Wang X,Divya SP,Joseph B,et al. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin[J]. Toxicol Appl Pharmacol,2014,280 (1):127−137. doi: 10.1016/j.taap.2014.06.028
    [9]
    Liu ZH,Hu YF,Li X,Mei ZX,Wu S,et al. Nanoencapsulation of cyanidin-3-O-glucoside enhances protection against UVB-induced epidermal damage through regulation of p53-mediated apoptosis in mice[J]. J Agric Food Chem,2018,66 (21):5359−5367. doi: 10.1021/acs.jafc.8b01002
    [10]
    刘晓芬,李方,殷学仁,徐昌杰,陈昆松. 花青苷生物合成转录调控研究进展[J]. 园艺学报,2013,40(11):2295−2306. doi: 10.16420/j.issn.0513-353x.2013.11.001

    Liu XF,Li F,Yin XR,Xu CJ,Chen KS. Recent advances in the transcriptional regulation of anthocyanin biosynthesis[J]. Acta Horticulturae Sinica,2013,40 (11):2295−2306. doi: 10.16420/j.issn.0513-353x.2013.11.001
    [11]
    Lin-Wang K,Bolitho K,Grafton K,Kortstee A,Karunairetnam S,et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J]. BMC Plant Biol,2010,10:50. doi: 10.1186/1471-2229-10-50
    [12]
    Xu WJ,Dubos C,Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci,2015,20 (3):176−185. doi: 10.1016/j.tplants.2014.12.001
    [13]
    LaFountain AM,Yuan YW. Repressors of anthocyanin biosynthesis[J]. New Phytol,2021,231 (3):933−949. doi: 10.1111/nph.17397
    [14]
    Zhao J,Dixon RA. The ‘ins’ and ‘outs’ of flavonoid transport[J]. Trends Plant Sci,2010,15 (2):72−80. doi: 10.1016/j.tplants.2009.11.006
    [15]
    De Brito Francisco R,Martinoia E. The vacuolar transportome of plant specialized metabolites[J]. Plant Cell Physiol,2018,59 (7):1326−1336.
    [16]
    Grotewold E,Davies K. Trafficking and sequestration of anthocyanins[J]. Nat Prod Commun,2008,3 (8):1251−1258.
    [17]
    王璐,戴思兰,金雪花,黄河,洪艳. 植物花青素苷转运机制的研究进展[J]. 生物工程学报,2014,30(6):848−863. doi: 10.13345/j.cjb.130515

    Wang L,Dai SL,Jin XH,Huang H,Hong Y. Advances in plant anthocyanin transport mechanism[J]. Chinese Journal of Biotechnology,2014,30 (6):848−863. doi: 10.13345/j.cjb.130515
    [18]
    Zhao J. Flavonoid transport mechanisms:how to go,and with whom[J]. Trends Plant Sci,2015,20 (9):576−585. doi: 10.1016/j.tplants.2015.06.007
    [19]
    Dixon DP,Lapthorn A,Edwards R. Plant glutathione transferases[J]. Genome Biol,2002,3 (3):reviews3004.1.
    [20]
    Loyall L,Uchida K,Braun S,Furuya M,Frohnmeyer H. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures[J]. Plant Cell,2000,12 (10):1939−1950.
    [21]
    Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs)[J]. Vitam Horm,2005,72:155−202.
    [22]
    Pearson WR. Phylogenies of glutathione transferase families[J]. Methods Enzymol,2005,401:186−204.
    [23]
    李栋,李莉,徐艳群,罗自生. 植物中花色苷转运蛋白研究进展[J]. 食品安全质量检测学报,2020,11(3):669−674. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.03.002

    Li D,Li L,Xu YQ,Luo ZS. Research progress of anthocyanin transporters in plants[J]. Journal of Food Safety and Quality,2020,11 (3):669−674. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.03.002
    [24]
    Marrs KA,Alfenito RM,Lloyd AM,Walbot V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2[J]. Nature,1995,375 (6530):397−400. doi: 10.1038/375397a0
    [25]
    Alfenito MR,Souer E,Goodman CD,Buell R,Mol J,et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases[J]. Plant Cell,1998,10 (7):1135−1149. doi: 10.1105/tpc.10.7.1135
    [26]
    Mueller LA,Goodman CD,Silady RA,Walbot V. AN9,a petunia glutathione S-transferase required for anthocyanin sequestration,is a flavonoid-binding protein[J]. Plant Physiol,2000,123 (4):1561−1570. doi: 10.1104/pp.123.4.1561
    [27]
    Larsen ES,Alfenito MR,Briggs WR,Walbot V. A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9[J]. Plant Cell Rep,2003,21 (9):900−904. doi: 10.1007/s00299-002-0545-x
    [28]
    Kitamura S,Shikazono N,Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis[J]. Plant J,2004,37 (1):104−114. doi: 10.1046/j.1365-313X.2003.01943.x
    [29]
    Yamazaki M,Shibata M,Nishiyama Y,Springob K,Kitayama M,et al. Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes[J]. FEBS J,2008,275 (13):3494−3502. doi: 10.1111/j.1742-4658.2008.06496.x
    [30]
    Kitamura S,Akita Y,Ishizaka H,Narumi I,Tanaka A. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen[J]. J Plant Physiol,2012,169 (6):636−642. doi: 10.1016/j.jplph.2011.12.011
    [31]
    Wei K,Wang LY,Zhang YZ,Ruan L,Li HL,et al. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea[J]. Plant J,2019,97 (5):825−840. doi: 10.1111/tpj.14161
    [32]
    Li YJ,Liu XF,Li F,Xiang LL,Chen KS. The isolation and identification of anthocyanin-related GSTs in chrysanthemum[J]. Horticulturae,2021,7 (8):231. doi: 10.3390/horticulturae7080231
    [33]
    Marrs KA. The functions and regulation of glutathione S-transferases in plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:127−158. doi: 10.1146/annurev.arplant.47.1.127
    [34]
    Pucker B,Selmar D. Biochemistry and molecular basis of intracellular flavonoid transport in plants[J]. Plants,2022,11 (7):963. doi: 10.3390/plants11070963
    [35]
    Hu B,Zhao JT,Lai B,Qin YH,Wang HC,et al. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn.[J]. Plant Cell Rep,2016,35 (4):831−843. doi: 10.1007/s00299-015-1924-4
    [36]
    Jiang SH,Chen M,He NB,Chen XL,Wang N,et al. MdGSTF6,activated by MdMYB1,plays an essential role in anthocyanin accumulation in apple[J]. Hortic Res,2019,6:40. doi: 10.1038/s41438-019-0118-6
    [37]
    Liu YF,Qi YW,Zhang AL,Wu HX,Liu ZD,et al. Molecular cloning and functional characterization of AcGST1,an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis)[J]. Plant Mol Biol,2019,100 (4):451−465.
    [38]
    Zhang Z,Tian CP,Zhang Y,Li CZY,Li X,et al. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear[J]. BMC Plant Biol,2020,20 (1):129. doi: 10.1186/s12870-020-02344-0
    [39]
    Xue L,Huang XR,Zhang ZH,Lin QH,Zhong QZ,et al. An anthocyanin-related glutathione S-transferase,MrGST1,plays an essential role in fruit coloration in Chinese bayberry (Morella rubra)[J]. Front Plant Sci,2022,13:903333. doi: 10.3389/fpls.2022.903333
    [40]
    Luo HF,Dai C,Li YP,Feng J,Liu ZC,et al. Reduced anthocyanins in petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry[J]. J Exp Bot,2018,69 (10):2595−2608. doi: 10.1093/jxb/ery096
    [41]
    Gao Q,Luo HF,Li YP,Liu ZC,Kang CY. Genetic modulation of RAP alters fruit coloration in both wild and cultivated strawberry[J]. Plant Biotechnol J,2020,18 (7):1550−1561. doi: 10.1111/pbi.13317
    [42]
    Cheng J,Liao L,Zhou H,Gu C,Wang L,et al. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers[J]. J Exp Bot,2015,66 (22):7227−7239. doi: 10.1093/jxb/erv419
    [43]
    Zhao Y,Dong WQ,Zhu YC,Allan AC,Lin-Wang K,et al. PpGST1,an anthocyanin-related glutathione S-transferase gene,is essential for fruit coloration in peach[J]. Plant Biotechnol J,2020,18 (5):1284−1295. doi: 10.1111/pbi.13291
    [44]
    Sun Y,Li H,Huang JR. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts[J]. Mol Plant,2012,5 (2):387−400. doi: 10.1093/mp/ssr110
    [45]
    Pérez-Díaz R,Madrid-Espinoza J,Salinas-Cornejo J,González-Villanueva E,Ruiz-Lara S. Differential roles for VviGST1,VviGST3,and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinífera[J]. Front Plant Sci,2016,7:1166.
    [46]
    Cui YM,Fan JW,Lu CF,Ren JS,Qi FT,et al. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus[J]. Plant Sci,2021,313:111094. doi: 10.1016/j.plantsci.2021.111094
    [47]
    Wang RR,Lu N,Liu CG,Dixon RA,Wu Q,et al. MtGSTF7,a TT19-like GST gene,is essential for accumulation of anthocyanins,but not proanthocyanins in Medicago truncatula[J]. J Exp Bot,2022,73 (12):4129−4146. doi: 10.1093/jxb/erac112
    [48]
    Yazaki K. Transporters of secondary metabolites[J]. Curr Opin Plant Biol,2005,8 (3):301−307. doi: 10.1016/j.pbi.2005.03.011
    [49]
    Lu YP,Li ZS,Rea PA. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump:isolation and functional definition of a plant ATP-Binding Cassette transporter gene[J]. Proc Natl Acad Sci USA,1997,94 (15):8243−8248. doi: 10.1073/pnas.94.15.8243
    [50]
    Lu YP,Li ZS,Drozdowicz YM,Hörtensteiner S,Martinoia E,et al. AtMRP2,an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites:functional comparisons with AtMRP1[J]. Plant Cell,1998,10 (2):267−282.
    [51]
    Goodman CD,Casati P,Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays[J]. Plant Cell,2004,16 (7):1812−1826. doi: 10.1105/tpc.022574
    [52]
    Sylvia C,Sun JL,Zhang YQ,Ntini C,Ogutu C,et al. Genome-Wide analysis of ATP binding cassette (ABC) transporters in peach (Prunus persica) and identification of a gene PpABCC1 involved in anthocyanin accumulation[J]. Int J Mol Sci,2023,24 (3):1931. doi: 10.3390/ijms24031931
    [53]
    Francisco RM,Regalado A,Ageorges A,Burla BJ,Bassin B,et al. ABCC1,an ATP binding cassette protein from grape berry,transports anthocyanidin 3-O-Glucosides[J]. Plant Cell,2013,25 (5):1840−1854. doi: 10.1105/tpc.112.102152
    [54]
    Behrens CE,Smith KE,Iancu CV,Choe JY,Dean JV. Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding cassette transporter AtABCC2[J]. Sci Rep,2019,9 (1):437. doi: 10.1038/s41598-018-37504-8
    [55]
    Kaur S,Sharma N,Kapoor P,Chunduri V,Pandey AK,et al. Spotlight on the overlapping routes and partners for anthocyanin transport in plants[J]. Physiol Plant,2021,171 (4):868−881. doi: 10.1111/ppl.13378
    [56]
    Debeaujon I,Peeters AJM,Léon-Kloosterziel KM,Koornneef M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium[J]. Plant Cell,2001,13 (4):853−871. doi: 10.1105/tpc.13.4.853
    [57]
    Marinova K,Pourcel L,Weder B,Schwarz M,Barron D,et al. The Arabidopsis MATE transporter TT12 Acts as a vacuolar flavonoid/H + -antiporter active in proanthocyanidin-accumulating cells of the seed coat[J]. Plant Cell,2007,19 (6):2023−2038. doi: 10.1105/tpc.106.046029
    [58]
    Kitamura S,Oono Y,Narumi I. Arabidopsis pab1,a mutant with reduced anthocyanins in immature seeds from banyuls,harbors a mutation in the MATE transporter FFT[J]. Plant Mol Biol,2016,90 (1):7−18.
    [59]
    Gomez C,Terrier N,Torregrosa L,Vialet S,Fournier-Level A,et al. Grapevine MATE-type proteins act as vacuolar H + -dependent acylated anthocyanin transporters[J]. Plant Physiol,2009,150 (1):402−415. doi: 10.1104/pp.109.135624
    [60]
    Zhao J,Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3’-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis[J]. Plant Cell,2009,21 (8):2323−2340. doi: 10.1105/tpc.109.067819
    [61]
    Zhao J,Huhman D,Shadle G,He XZ,Sumner LW,et al. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula[J]. Plant Cell,2012,23 (4):1536−1555.
    [62]
    Pérez-Díaz R,Ryngajllo M,Pérez-Díaz J,Peña-Cortés H,Casaretto JA,et al. VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L.[J]. Plant Cell Rep,2014,33 (7):1147−1159. doi: 10.1007/s00299-014-1604-9
    [63]
    Chen SY,Tang YM,Hu YY,Wang Y,Sun B,et al. FaTT12-1,a multidrug and toxin extrusion (MATE) member involved in proanthocyanidin transport in strawberry fruits[J]. Sci Hortic,2018,231:158−165. doi: 10.1016/j.scienta.2017.12.032
    [64]
    Chanoca A,Kovinich N,Burkel B,Stecha S,Bohorquez-Restrepo A,et al. Anthocyanin vacuolar inclusions form by a microautophagy mechanism[J]. Plant Cell,2015,27 (9):2545−2559. doi: 10.1105/tpc.15.00589
    [65]
    Zhang HB,Wang L,Deroles S,Bennett R,Davies K. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals[J]. BMC Plant Biol,2006,6:29. doi: 10.1186/1471-2229-6-29
    [66]
    Markham KR,Gould KS,Winefield CS,Mitchell KA,Bloor SJ,et al. Anthocyanic vacuolar inclusions-their nature and significance in flower colouration[J]. Phytochemistry,2000,55 (4):327−336. doi: 10.1016/S0031-9422(00)00246-6
    [67]
    Conn S,Zhang W,Franco C. Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture[J]. Biotechnol Lett,2003,25 (11):835−839. doi: 10.1023/A:1024028603089
    [68]
    Kallam K,Appelhagen I,Luo J,Albert N,Zhang HB,et al. Aromatic decoration determines the formation of anthocyanic vacuolar inclusions[J]. Curr Biol,2017,27 (7):945−957. doi: 10.1016/j.cub.2017.02.027
    [69]
    Poustka F,Irani NG,Feller A,Lu YH,Pourcel L,et al. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions[J]. Plant Physiol,2007,145 (4):1323−1335. doi: 10.1104/pp.107.105064
    [70]
    Braidot E,Zancani M,Petrussa E,Peresson C,Bertolini A,et al. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L. )[J]. Plant Signal Behav,2008,3 (9):626−632. doi: 10.4161/psb.3.9.6686
    [71]
    Gomez C,Conejero G,Torregrosa L,Cheynier V,Terrier N,et al. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST[J]. Plant J,2011,67 (6):960−970. doi: 10.1111/j.1365-313X.2011.04648.x
    [72]
    Kitamura S,Matsuda F,Tohge T,Yonekura-Sakakibara K,Yamazaki M,et al. Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants[J]. Plant J,2010,62 (4):549−559. doi: 10.1111/j.1365-313X.2010.04174.x
    [73]
    Ichino T,Fuji K,Ueda H,Takahashi H,Koumoto Y,et al. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana[J]. Plant J,2014,80 (3):410−423. doi: 10.1111/tpj.12637
  • Related Articles

    [1]Chen Boshen, Miao Lingfeng, Yang Fan. Effects of waterlogging and salinity stresses on eco-physiology and accumulation of Na+, K+, and Cl in two waterlogging-tolerant arbor species[J]. Plant Science Journal, 2024, 42(3): 377-386. DOI: 10.11913/PSJ.2095-0837.23264
    [2]Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
    [3]Li Guang-Lu, Wang Wen-Guo, Chen Zhi-Xin, Hu Zeng-Hui, Leng Ping-Sheng. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress[J]. Plant Science Journal, 2018, 36(2): 282-290. DOI: 10.11913/PSJ.2095-0837.2018.20282
    [4]YANG Zhong-Min, WANG Yan. Cloning of Potassium Transporter Gene (HcKUP12) from Halostachys caspica and Its Expression Profile under Salt Stress[J]. Plant Science Journal, 2015, 33(4): 499-506. DOI: 10.11913/PSJ.2095-0837.2015.40499
    [5]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [6]WANG Yan, CHEN Xi, YANG Zhong-Min, LIU Deng-Hui. Cloning of Pathogen-Related Protein Gene(SfPR-1) from Salsola ferganica and Its Expression Analysis under Salt Stress[J]. Plant Science Journal, 2013, 31(2): 164-170. DOI: 10.3724/SP.J.1142.2013.20164
    [7]CHEN Tao, WANG Gui-Mei, SHEN Wei-Wei, LI Xiao-Zhen, QI Jian-Min, XU Jian-Tang, TAO Ai-Fen, LIU Xiao-Qian. Effect of Salt Stress on the Growth and Antioxidant Enzyme Activity of Kenaf Seedlings[J]. Plant Science Journal, 2011, 1(4): 493-501.
    [8]LI Bin, GUO Shi-Rong, SUN Jin, LI Juan. Effects of Exogenous Spermidine on Free Polyamine Content and Polyamine Biosynthesis Gene Expression in Cucumber Seedlings under Salt Stress[J]. Plant Science Journal, 2011, 1(4): 480-485.
    [9]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong. Effects of Exogenous Proline on Nitrate Reduction in Melon Seedlings under Salt Stress[J]. Plant Science Journal, 2011, 29(1): 118-123.
    [10]ZHANG Run-Hua, GUO Shi-Rong, FAN Huai-Fu. Effects of Exogenous Spd on NO3--N,NH4+-N Contents and Nitrate Reductase Activity of Salt Stressed Leaves and Roots of Cucumber Seedlings[J]. Plant Science Journal, 2006, 24(4): 381-384.
  • Cited by

    Periodical cited type(1)

    1. 周静静,苗灵凤,李大东,田梦洁,杨帆. 旱-盐复合胁迫对降香黄檀幼苗生长和生理生化特性的影响. 热带亚热带植物学报. 2025(02): 197-206 .

    Other cited types(0)

Catalog

    Article views (490) PDF downloads (147) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return