Citation: | Li SS,Chen M,Chen WL,Ge S. Advances in the study and utilization of Miscanthus resources[J]. Plant Science Journal,2023,41(6):705−718. DOI: 10.11913/PSJ.2095-0837.23148 |
As second-generation energy plants, Miscanthus species exhibit great potential in the development of renewable energy crops due to their high biomass and adaptability to a wide range of environments and soil conditions. China hosts a substantial variety of wild Miscanthus species, providing a unique opportunity for their development and utilization. In this review, we briefly introduce the current state and challenges in the taxonomy of the Miscanthus genus and provide an overview regarding the geographical distribution and biological features of Miscanthus species. We also provide a summary of recent studies focusing on flowering phenology, mating systems, population genetic variation, adaptive differentiation, hybridization, polyploidy, resource utilization, and genetic improvement. Finally, we identify potential challenges and outline future research directions, including basic studies for the utilization, exploitation, and industrialization of Miscanthus resources.
[1] |
Qin ZC,Zhuang QL,Cai XM,He YJ,Huang Y,et al. Biomass and biofuels in China:toward bioenergy resource potentials and their impacts on the environment[J]. Renew Sust Energy Rev,2018,82:2387−2400. doi: 10.1016/j.rser.2017.08.073
|
[2] |
Bartle JR,Abadi A. Toward sustainable production of second generation bioenergy feedstocks[J]. Energy Fuel,2010,24 (1):2−9. doi: 10.1021/ef9006438
|
[3] |
Sang T. Toward the domestication of lignocellulosic energy crops:learning from food crop domestication[J]. J Integr Plant Biol,2011,53 (2):96−104. doi: 10.1111/j.1744-7909.2010.01006.x
|
[4] |
Wang CP,Kong YZ,Hu RB,Zhou GK. Miscanthus:a fast-growing crop for environmental remediation and biofuel production[J]. GCB Bioenergy,2021,13 (1):58−69. doi: 10.1111/gcbb.12761
|
[5] |
Nebeská D,Malinská HA,Erol A,Pidlisnyuk V,Kuráň P,et al. Stress response of Miscanthus plants and soil microbial communities:a case study in metals and hydrocarbons contaminated soils[J]. Appl Sci,2021,11 (4):1866. doi: 10.3390/app11041866
|
[6] |
Vermerris W. Miscanthus: genetic resources and breeding potential to enhance bioenergy production[M]//Vermerris W, ed. Genetic Improvement of Bioenergy Crops. New York: Springer, 2008: 273-294.
|
[7] |
Hodkinson TR,Klaas M,Jones MB,Prickett R,Barth S. Miscanthus:a case study for the utilization of natural genetic variation[J]. Plant Genet Resour,2015,13 (3):219−237. doi: 10.1017/S147926211400094X
|
[8] |
Davey CL,Jones LE,Squance M,Purdy SJ,Maddison AL,et al. Radiation capture and conversion efficiencies of Miscanthus sacchariflorus,M. sinensis and their naturally occurring hybrid M. × giganteus[J]. GCB Bioenergy,2017,9 (2):385−399. doi: 10.1111/gcbb.12331
|
[9] |
Szulczewski W,Żyromski A,Jakubowski W,Biniak-Pieróg M. A new method for the estimation of biomass yield of giant Miscanthus (Miscanthus giganteus) in the course of vegetation[J]. Renew Sustainable Energy Rev,2018,82:1787−1795. doi: 10.1016/j.rser.2017.07.057
|
[10] |
田美虹,郭孟齐,易自力,黄红梅,陈智勇,等. 华东植物区系芒属植物的表型遗传多样性研究[J]. 湖南农业大学学报(自然科学版),2019,45(4):348−354.
Tian MH,Guo MQ,Yi ZL,Huang HM,Chen ZY,et al. Phenotypic genetic diversity of Miscanthus spp. in the East China floristic region[J]. Journal of Hunan Agricultural University (Natural Sciences)
|
[11] |
Weng JH,Ueng RG. Effect of temperature on photosynthesis of Miscanthus clones collected from different elevations[J]. Photosynthetica,1997,34 (2):307−311. doi: 10.1023/A:1006809111468
|
[12] |
Ezaki B,Nagao E,Yamamoto Y,Nakashima S,Enomoto T. Wild plants,Andropogon virginicus L. and Miscanthus sinensis Anders,are tolerant to multiple stresses including aluminum,heavy metals and oxidative stresses[J]. Plant Cell Rep,2008,27 (5):951−961. doi: 10.1007/s00299-007-0503-8
|
[13] |
李勤奋,杜卫兵,李志安,王峥峰,彭少麟. 金属矿区芒草种群对重金属的积累及其与土壤特性的关系[J]. 生态学杂志,2006,25(3):255−258. doi: 10.3321/j.issn:1000-4890.2006.03.005
Li QF,Du WB,Li ZA,Wang ZF,Peng SL. Heavy metals accumulation in mining area’s Miscanthus sinensis populations and its relationship with soil characters[J]. Chinese Journal of Ecology,2006,25 (3):255−258. doi: 10.3321/j.issn:1000-4890.2006.03.005
|
[14] |
Sang T,Zhu WX. China’s bioenergy potential[J]. GCB Bioenergy,2011,3 (2):79−90. doi: 10.1111/j.1757-1707.2010.01064.x
|
[15] |
解新明,周峰,赵燕慧,卢小良. 多年生能源禾草的产能和生态效益[J]. 生态学报,2008,28(5):2329−2342.
Xie XM,Zhou F,Zhao YH,Lu XL. A summary of ecological and energy-producing effects of perennial energy grasses[J]. Acta Ecologica Sinica,2008,28 (5):2329−2342.
|
[16] |
冯淑敏,胡宝全,马洪峥. 芒属植物资源研究、利用现状和开发前景[J]. 热带亚热带植物学报,2022,30(4):592−604. doi: 10.11926/jtsb.4491
Feng SM,Hu BQ,Ma HZ. Research,utilization status and application prospects of Miscanthus resources[J]. Journal of Tropical and Subtropical Botany,2022,30 (4):592−604. doi: 10.11926/jtsb.4491
|
[17] |
Li SS,Zhou HF,Chen WL,Yan J,Cai Z,et al. Population genetics and evolutionary history of Miscanthus species in China[J]. J Syst Evol,2019,57 (5):530−542. doi: 10.1111/jse.12497
|
[18] |
Xue S,Lewandowski I,Wang XY,Yi ZL. Assessment of the production potentials of Miscanthus on marginal land in China[J]. Renew Sust Energ Rev,2016,54:932−943. doi: 10.1016/j.rser.2015.10.040
|
[19] |
Ben Fradj N,Rozakis S,Borzęcka M,Matyka M. Miscanthus in the European bio-economy:a network analysis[J]. Ind Crop Prod,2020,148:112281. doi: 10.1016/j.indcrop.2020.112281
|
[20] |
黄杰,黄平,左海涛. 栽培管理对荻生长特性及生物质成分的影响[J]. 草地学报,2008,16(6):646−651.
Huang J,Huang P,Zuo HT. Effect of cultivation management on the growth characteristics and biomass components of Miscanthus sacchariflorus[J]. Acta Agrestia Sinica,2008,16 (6):646−651.
|
[21] |
Andersson MJ. Om de med Saccharum beslägtade genera[J]. Ö fversigt af Kongl. Vetenskaps-Akademiens Fö rhandlingar,1855,12:151−167.
|
[22] |
Pilger R. Die Natürlichen pflanzenfamilien, 14e[M]. Leipzig: Verlag Von Wilhelm Engelmann, 1940: 111-113.
|
[23] |
Clayton WD. Flora of tropical east Africa. Gramineae (Part 1)[M]. London: Crown Agents for Oversea Governments and Administrations, 1970: 176.
|
[24] |
Hartley W. Studies on the origin,evolution and distribution of the Gramineae. Ⅰ. The tribe Andropogoneae[J]. Aust J Bot,1958,6 (2):116−128. doi: 10.1071/BT9580116
|
[25] |
孙必兴,王松. 禾本科甘蔗亚族一新属[J]. 云南植物研究,1997,19(3):239−240.
Sun BX,Wang S. A new genus in the subtribe Saccharinae (Gramineae)[J]. Acta Botanica Yunnanica,1997,19 (3):239−240.
|
[26] |
Chen SL, Renvoize SA. Miscanthus Andersson: Vol 22[M]. Flora of China. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press, 2006: 105-108.
|
[27] |
Sun Q,Lin Q,Yi ZL,Yang ZR,Zhou FS. A taxonomic revision of Miscanthus s. l. (Poaceae) from China[J]. Bot J Linn Soc,2010,164 (2):178−220. doi: 10.1111/j.1095-8339.2010.01082.x
|
[28] |
刘亮. 中国植物志: 第10卷: 第2分册[M]. 北京: 科学出版社, 1997: 4-26.
|
[29] |
Hodkinson TR,Chase MW,Lledó DM,Salamin N,Renvoize SA. Phylogenetics of Miscanthus,Saccharum and related genera (Saccharinae,Andropogoneae,Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers[J]. J Plant Res,2002,115 (5):381−392. doi: 10.1007/s10265-002-0049-3
|
[30] |
Renvoize SA. The genus Miscanthus[J]. Plantsman,2003,2 (4):207−211.
|
[31] |
马洪峥. 芒属系统发育重建和双药芒类群变异式样研究[D]. 北京: 北京林业大学, 2015: 1-10.
|
[32] |
Nakai T. Notulae ad plantas Japoniae et Coreæ. ⅩⅢ[J]. Shokubutsug Zasshi,1917,31 (361):3−30. doi: 10.15281/jplantres1887.31.en3
|
[33] |
Honda M. Revisio graminum Japoniae Ⅲ[J]. Shokubutsug Zasshi,1923,37 (439-444):113−124. doi: 10.15281/jplantres1887.37.439-444_en113
|
[34] |
刘亮,朱明,朱太平. 芒荻类植物资源的开发和利用[J]. 自然资源学报,2001,16(6):562−563. doi: 10.3321/j.issn:1000-3037.2001.06.014
Liu L,Zhu M,Zhu TP. Exploitation and utilization of Miscanthus & Triarrhena[J]. Journal of Natural Resources,2001,16 (6):562−563. doi: 10.3321/j.issn:1000-3037.2001.06.014
|
[35] |
Adati S. Studies on the genus Miscanthus with special reference to the Japanese species suitable for breeding purpose as fodder crops[J]. Bull Fac Agric Mie Univ,1958 (17):1−112.
|
[36] |
周存宇,杨朝东. 不同生境中荻草根状茎扩展速率及地上茎生长的研究[J]. 安徽农业科学,2009,37(22):10482−10483. doi: 10.13989/j.cnki.0517-6611.2009.22.127
Zhou CY,Yang CD. Study on growth rate of Triarrhena sacchariflora rhizome and growth of its aerial stem in different habitats[J]. Journal of Anhui Agricultural Sciences,2009,37 (22):10482−10483. doi: 10.13989/j.cnki.0517-6611.2009.22.127
|
[37] |
刘大汉,张施耀. 南荻北引栽培技术研究[J]. 山东农业科学,1993(1):45−46. doi: 10.14083/j.issn.1001-4942.1993.01.024
|
[38] |
萧运峰,王锐,高洁. 五节芒生态──生物学特性的研究[J]. 四川草原,1995(1):25−29.
|
[39] |
Jensen E,Farrar K,Thomas-Jones S,Hastings A,Donnison I,Clifton-Brown J. Characterization of flowering time diversity in Miscanthus species[J]. GCB Bioenergy,2011,3 (5):387−400. doi: 10.1111/j.1757-1707.2011.01097.x
|
[40] |
Yan J,Chen W,Luo F,Ma H,Meng A,et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication[J]. GCB Bioenergy,2012,4 (1):49−60. doi: 10.1111/j.1757-1707.2011.01108.x
|
[41] |
Hirayoshi I,Nishikawa K,Kato R. Cytogenetical studies on forage plants. (Ⅳ) Self-incompatibility in Miscanthus[J]. Jpn J Breed,1955,5 (3):167−170. doi: 10.1270/jsbbs1951.5.167
|
[42] |
Deuter M. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe[M]//Lewandowski I, Clifton-Brown JC, eds. European Miscanthus Improvement. Stuttgart: Institute of Crop Production and Grassland Research, University of Hohenheim, 2000: 28-52.
|
[43] |
Jiang JX,Guan YF,McCormick S,Juvik J,Lubberstedt T,Fei SZ. Gametophytic self‐incompatibility is operative in Miscanthus sinensis (Poaceae) and is affected by pistil age[J]. Crop Sci,2017,57 (4):1948−1956. doi: 10.2135/cropsci2016.11.0932
|
[44] |
Swaminathan K,Chae WB,Mitros T,Varala K,Xie L,et al. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy[J]. BMC Genomics,2012,13 (1):142. doi: 10.1186/1471-2164-13-142
|
[45] |
Dong HX,Liu SY,Clark LV,Sharma S,Gifford JM,et al. Genetic mapping of biomass yield in three interconnected Miscanthus populations[J]. GCB Bioenergy,2018,10 (3):165−185. doi: 10.1111/gcbb.12472
|
[46] |
Tang YM,Xiao L,Iqbal Y,Liao JF,Xiao LQ,et al. Molecular cytogenetic characterization and phylogenetic analysis of four Miscanthus species (Poaceae)[J]. Comp Cytogenet,2019,13 (3):211−230. doi: 10.3897/CompCytogen.v13i3.35346
|
[47] |
Li X,Hu D,Luo MM,Zhu M,Li XW,et al. Nuclear DNA content variation of three Miscanthus species in China[J]. Genes Genom,2013,35 (1):13−20. doi: 10.1007/s13258-013-0063-y
|
[48] |
Sheng JJ,Hu XH,Zeng XF,Li Y,Zhou FS,et al. Nuclear DNA content in Miscanthus sp. and the geographical variation pattern in Miscanthus lutarioriparius[J]. Sci Rep,2016,6 (1):34342. doi: 10.1038/srep34342
|
[49] |
Adati S,Shiotani I. The cytotaxonomy of the genus Miscanthus and its phylogenic status[J]. Bull Fac Agric Mie Univ,1962,25:1−24.
|
[50] |
Petersen KK,Hagberg P,Kristiansen K,Forkmann G. In vitro chromosome doubling of Miscanthus sinensis[J]. Plant Breed,2002,121 (5):445−450. doi: 10.1046/j.1439-0523.2002.738314.x
|
[51] |
Głowacka K,Jeżowski S,Kaczmarek Z. Impact of colchicine application during callus induction and shoot regeneration on micropropagation and polyploidisation rates in two Miscanthus species[J]. In Vitro Cell Dev-Plant,2010,46 (2):161−171. doi: 10.1007/s11627-010-9282-y
|
[52] |
Yu CY,Kim HS,Rayburn AL,Widholm JM,Juvik JA. Chromosome doubling of the bioenergy crop,Miscanthus × giganteus[J]. GCB Bioenergy,2009,1 (6):404−412. doi: 10.1111/j.1757-1707.2010.01032.x
|
[53] |
Jørgensen U. Benefits versus risks of growing biofuel crops:the case of Miscanthus[J]. Curr Opin Env Sust,2011,3 (1-2):24−30. doi: 10.1016/j.cosust.2010.12.003
|
[54] |
Uwatoko N,Tamura KI,Yamashita H,Gau M. Naturally occurring triploid hybrids between Miscanthus sacchariflorus and M. sinensis in southern Japan,show phenotypic variation in agronomic and morphological traits[J]. Euphytica,2016,212 (3):355−370. doi: 10.1007/s10681-016-1760-9
|
[55] |
Tamura KI,Uwatoko N,Yamashita H,Fujimori M,Akiyama Y,et al. Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan:morphological characterization,genetic structure,and origin[J]. BioEnergy Res,2016,9 (1):315−325. doi: 10.1007/s12155-015-9683-1
|
[56] |
朱明东. 芒与五节芒种间自然杂交研究[D]. 长沙: 湖南农业大学, 2011: 1-10.
|
[57] |
朱玉叶,艾辛,蒋建雄,陈翠霞,文浩,等. 五节芒与荻人工杂交种的创建与鉴定研究[J]. 中国草地学报,2013,35(2):31−36.
Zhu YY,Ai X,Jiang JX,Chen CX,Wen H,et al. Creation and identification of artificial hybrids between Miscanthus floridulus and M. sacchariflorus[J]. Chinese Journal of Grassland,2013,35 (2):31−36.
|
[58] |
Rusinowski S,Krzyżak J,Clifton-Brown J,Jensen E,Mos M,et al. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations[J]. Environ Pollut,2019,252:1377−1387. doi: 10.1016/j.envpol.2019.06.062
|
[59] |
王钻. 南荻与芒杂交后代遗传性状比较及优良株系筛选[D]. 长沙: 湖南农业大学, 2017: 1-10.
|
[60] |
文浩. 荻与南荻杂种F1的真实性鉴定及性状遗传变异分析[D]. 长沙: 湖南农业大学, 2013: 1-10.
|
[61] |
Zhao H,Wang B,He JR,Yang JP,Pan L,et al. Genetic diversity and population structure of Miscanthus sinensis germplasm in China[J]. PLoS One,2013,8 (10):e75672. doi: 10.1371/journal.pone.0075672
|
[62] |
Iwata H,Kamijo T,Tsumura Y. Genetic structure of Miscanthus sinensis ssp. condensatus (Poaceae) on Miyake Island:implications for revegetation of volcanically devastated sites[J]. Ecol Res,2005,20 (2):233−238. doi: 10.1007/s11284-004-0018-5
|
[63] |
Chou CH,Hwang SY,Chang FC. Population study of Miscanthus floridulus (Labill) Warb. Ⅰ. Variation of peroxidase and esterase in 27 populations in Taiwan[J]. Bot Bull Acad Sin,1987,28 (2):247−281.
|
[64] |
Shimono Y,Kurokawa S,Nishida T,Ikeda H,Futagami N. Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae),a native pioneer grass in Japan[J]. Botany,2013,91 (7):449−456. doi: 10.1139/cjb-2012-0212
|
[65] |
Clark LV,Brummer JE,Głowacka K,Hall MC,Heo K,et al. A footprint of past climate change on the diversity and population structure of Miscanthus sinensis.[J]. Ann Bot,2014,114 (1):97−107. doi: 10.1093/aob/mcu084
|
[66] |
Clark LV,Jin XL,Petersen KK,Anzoua KG,Bagmet L,et al. Population structure of Miscanthus sacchariflorus reveals two major polyploidization events,tetraploid-mediated unidirectional introgression from diploid M. sinensis,and diversity centred around the Yellow Sea[J]. Ann Bot,2019,124 (4):731−748. doi: 10.1093/aob/mcy161
|
[67] |
Zhang GB,Ge CX,Xu PP,Wang SK,Cheng SN,et al. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae[J]. Nat Plants,2021,7 (5):608−618. doi: 10.1038/s41477-021-00908-y
|
[68] |
Kalinina O,Nunn C,Sanderson R,Hastings AFS,van der Weijde T,et al. Extending Miscanthus cultivation with novel germplasm at six contrasting sites[J]. Front Plant Sci,2017,8:563.
|
[69] |
Moyer JL. Adaptability of Miscanthus cultivars for biomass production[J]. Kansas Agricultural Experiment Station Research Reports, 2017, 2(3). doi: 10.4148/2378-5977.1377.
|
[70] |
Clifton-Brown JC,Lewandowski I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance[J]. New Phytol,2000,148 (2):287−294. doi: 10.1046/j.1469-8137.2000.00764.x
|
[71] |
Dong HX,Green SV,Nishiwaki A,Yamada T,Stewart JR,et al. Winter hardiness of Miscanthus(Ⅰ):overwintering ability and yield of new Miscanthus × giganteus genotypes in Illinois and Arkansas[J]. GCB Bioenergy,2019,11 (5):691−705. doi: 10.1111/gcbb.12588
|
[72] |
Dong HX,Liu SY,Clark LV,Sharma S,Gifford JM,et al. Winter hardiness of Miscanthus (Ⅱ):genetic mapping for overwintering ability and adaptation traits in three interconnected Miscanthus populations[J]. GCB Bioenergy,2019,11 (5):706−726. doi: 10.1111/gcbb.12587
|
[73] |
Slavov GT,Nipper R,Robson P,Farrar K,Allison GG,et al. Genome-wide association studies and prediction of 17 traits related to phenology,biomass and cell wall composition in the energy grass Miscanthus sinensis[J]. New Phytol,2014,201 (4):1227−1239. doi: 10.1111/nph.12621
|
[74] |
Dong HX,Clark LV,Lipka AE,Brummer JE,Głowacka K,et al. Winter hardiness of Miscanthus (Ⅲ):genome-wide association and genomic prediction for overwintering ability in Miscanthus sinensis[J]. GCB Bioenergy,2019,11 (8):930−955. doi: 10.1111/gcbb.12615
|
[75] |
Clark LV,Dwiyanti MS,Anzoua KG,Brummer JE,Ghimire BK,et al. Genome-wide association and genomic prediction for biomass yield in a genetically diverse Miscanthus sinensis germplasm panel phenotyped at five locations in Asia and North America[J]. GCB Bioenergy,2019,11 (8):988−1007. doi: 10.1111/gcbb.12620
|
[76] |
Xu WZ,Zhang XQ,Huang LK,Nie G,Wang JP. Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China[J]. Biochem Syst Ecol,2013,48:174−181. doi: 10.1016/j.bse.2012.11.024
|
[77] |
Zhang QX,Shen YK,Shao RX,Fang J,He YQ,et al. Genetic diversity of natural Miscanthus sinensis populations in China revealed by ISSR markers[J]. Biochem Syst Ecol,2013,48:248−256. doi: 10.1016/j.bse.2012.12.024
|
[78] |
Nie G,Zhang XQ,Huang LK,Xu WZ,Wang JP,et al. Genetic variability and population structure of the potential bioenergy crop Miscanthus sinensis (Poaceae) in southwest China based on SRAP markers[J]. Molecules,2014,19 (8):12881−12897. doi: 10.3390/molecules190812881
|
[79] |
Yook MJ,Lim SH,Song JS,Kim JW,Zhang CJ,et al. Assessment of genetic diversity of Korean Miscanthus using morphological traits and SSR markers[J]. Biomass Bioenergy,2014,66:81−92. doi: 10.1016/j.biombioe.2014.01.025
|
[80] |
Yan HD,Zhang XQ,Fu C,Huang LK,Yin GH,et al. Chloroplast DNA variation and genetic structure of Miscanthus sinensis in southwest China[J]. Biochem Syst Ecol,2015,58:132−138. doi: 10.1016/j.bse.2014.11.007
|
[81] |
Clark LV,Stewart JR,Nishiwaki A,Toma Y,Kjeldsen JB,et al. Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression[J]. J Exp Bot,2015,66 (14):4213−4225. doi: 10.1093/jxb/eru511
|
[82] |
Yan J,Zhu MD,Liu W,Xu Q,Zhu CY,et al. Genetic variation and bidirectional gene flow in the riparian plant Miscanthus lutarioriparius,across its endemic range:implications for adaptive potential[J]. GCB Bioenergy,2016,8 (4):764−776. doi: 10.1111/gcbb.12278
|
[83] |
Zhao YL,Basak S,Fleener CE,Egnin M,Sacks EJ,et al. Genetic diversity of Miscanthus sinensis in US naturalized populations[J]. GCB Bioenergy,2017,9 (5):965−972. doi: 10.1111/gcbb.12404
|
[84] |
Yang S,Xue S,Kang WW,Qian ZX,Yi ZL. Genetic diversity and population structure of Miscanthus lutarioriparius,an endemic plant of China[J]. PLoS One,2019,14 (2):e0211471. doi: 10.1371/journal.pone.0211471
|
[85] |
Xu Q,Zhu CY,Fan YY,Song ZH,Xing SL,et al. Population transcriptomics uncovers the regulation of gene expression variation in adaptation to changing environment[J]. Sci Rep,2016,6 (1):25536. doi: 10.1038/srep25536
|
[86] |
Xu Q,Song ZH,Zhu CY,Tao CC,Kang LF,et al. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change[J]. BMC Plant Biol,2017,17 (1):42. doi: 10.1186/s12870-017-0984-8
|
[87] |
Zhu CY, Liu W, Kang LF, Xu Q, Xing SL, et al. Haplotypes phased from population transcriptomes detecting selection in the initial adaptation of Miscanthus lutarioriparius to stressful environments[J]. Plant Genome, 2017, 10(2). doi: 10.3835/plantgenome2016.11.0119.
|
[88] |
Song ZH,Xu Q,Lin C,Tao CC,Zhu CY,et al. Transcriptomic characterization of candidate genes responsive to salt tolerance of Miscanthus energy crops[J]. GCB Bioenergy,2017,9 (7):1222−1237. doi: 10.1111/gcbb.12413
|
[89] |
Xing SL,Tao CC,Song ZH,Liu W,Yan J,et al. Coexpression network revealing the plasticity and robustness of population transcriptome during the initial stage of domesticating energy crop Miscanthus lutarioriparius[J]. Plant Mol Biol,2018,97 (6):489−506. doi: 10.1007/s11103-018-0754-5
|
[90] |
Yan J,Song ZH,Xu Q,Kang LF,Zhu CY,et al. Population transcriptomic characterization of the genetic and expression variation of a candidate progenitor of Miscanthus energy crops[J]. Mol Ecol,2017,26 (21):5911−5922. doi: 10.1111/mec.14338
|
[91] |
Hu RB,Yu CJ,Wang XY,Jia CL,Pei SQ,et al. De novo transcriptome analysis of Miscanthus lutarioriparius identifies candidate genes in rhizome development[J]. Front Plant Sci,2017,8:492.
|
[92] |
任君霞,方佳,何勇清,郑炳松,蔡建国. 芒属观赏草的研究进展[J]. 科技通报,2012,28(11):66−71. doi: 10.3969/j.issn.1001-7119.2012.11.015
Ren JX,Fang J,He YQ,Zheng BS,Cai JG. A review of research on ornamental grasses Miscanthus[J]. Bulletin of Science and Technology,2012,28 (11):66−71. doi: 10.3969/j.issn.1001-7119.2012.11.015
|
[93] |
Liao CB,Deng YH,Wang XZ,Fan XL,Yu T,Yang Y. Manufacture and mechanical properties of biocomposite made of reed and silvergrass[J]. Appl Mech Mat,2012,248:237−242. doi: 10.4028/www.scientific.net/AMM.248.237
|
[94] |
Heaton EA,Dohleman FG,Long SP. Meeting US biofuel goals with less land:the potential of Miscanthus[J]. Glob Change Biol,2008,14 (9):2000−2014. doi: 10.1111/j.1365-2486.2008.01662.x
|
[95] |
McCalmont JP,Hastings A,McNamara NP,Richter GM,Robson P,et al. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK[J]. GCB Bioenergy,2017,9 (3):489−507. doi: 10.1111/gcbb.12294
|
[96] |
易自力. 芒属能源植物资源的开发与利用[J]. 湖南农业大学学报(自然科学版),2012,38(5):455−463.
Yi ZL. Exploitation and utilization of Miscanthus as energy plant[J]. Journal of Hunan Agricultural University (Natural Sciences)
|
[97] |
Hastings A,Clifton-Brown J,Wattenbach M,Mitchell CP,Stampfl P,Smith P. Future energy potential of Miscanthus in Europe[J]. GCB Bioenergy,2009,1 (2):180−196. doi: 10.1111/j.1757-1707.2009.01012.x
|
[98] |
李秀玲,刘君,宋海鹏,杨志民. 应用Logistic方程测定13种观赏草的耐热性研究[J]. 江苏农业科学,2010(3):184−186. doi: 10.15889/j.issn.1002-1302.2010.03.119
Li XL,Liu J,Song HP,Yang ZM. Measurement of heat resistance of thirteen kinds of ornamental grasses with Logistic equation[J]. Jiangsu Agricultural Sciences,2010 (3):184−186. doi: 10.15889/j.issn.1002-1302.2010.03.119
|
[99] |
任君霞. 5种(品种)芒属观赏草的抗性研究及园林应用[D]. 杭州: 浙江农林大学, 2012: 1-10.
|
[100] |
马芳蕾,陈莹,聂晶晶,林思祖. 4种芒属观赏草对干旱胁迫的生理响应[J]. 森林与环境学报,2016,36(2):180−187.
Ma FL,Chen Y,Nie JJ,Lin SZ. Physiological response of 4 species of Miscanthus ornamental grass to drought stress[J]. Journal of Forest and Environment,2016,36 (2):180−187.
|
[101] |
Bonin CL,Heaton EA,Barb J. Miscanthus sacchariflorus-biofuel parent or new weed?[J]. GCB Bioenergy,2014,6 (6):629−636. doi: 10.1111/gcbb.12098
|
[102] |
Stavridou E,Webster RJ,Robson PRH. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments[J]. Ann Bot,2019,124 (4):653−674. doi: 10.1093/aob/mcz009
|
[103] |
吴道铭,陈晓阳,曾曙才. 芒属植物重金属耐性及其在矿山废弃地植被恢复中的应用潜力[J]. 应用生态学报,2017,28(4):1397−1406.
Wu DM,Chen XY,Zeng SC. Heavy metal tolerance of Miscanthus plants and their phytoremediation potential in abandoned mine land[J]. Chinese Journal of Applied Ecology,2017,28 (4):1397−1406.
|
[104] |
Lewandowski I,Clifton-Brown JC,Scurlock JMO,Huisman W. Miscanthus:European experience with a novel energy crop[J]. Biomass Bioenerg,2000,19 (4):209−227. doi: 10.1016/S0961-9534(00)00032-5
|
[105] |
陈鹏飞,张锡亭,胡久清,董任瑞,郭学福. 荻良种选育及品种资源研究[J]. 湘潭师范学院学报(自然科学版),1989(3):26−40.
Chen PF,Zheng XT,Hu JQ,Dong RR,Guo XF. Reed variet resources and the selection of reeds with projecting and corpulent knobs[J]. Journal of Xiangtan Normal University (Natural Science Edition)
|
[106] |
Atienza SG,Satovic Z,Petersen KK,Dolstra O,Martín A. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers[J]. Theor Appl Genet,2002,105 (6):946−952. doi: 10.1007/s00122-002-0956-7
|
[107] |
Atienza SG,Satovic Z,Petersen KK,Dolstra O,Martín A. Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. Ⅰ. Total height,flag-leaf height and stem diameter[J]. Theor Appl Genet,2003,107 (1):123−129. doi: 10.1007/s00122-003-1220-5
|
[108] |
Atienza SG,Satovic Z,Petersen KK,Dolstra O,Martín A. Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. Ⅱ. Chlorine and potassium content[J]. Theor Appl Genet,2003,107 (5):857−863. doi: 10.1007/s00122-003-1218-z
|
[109] |
Atienza SG,Satovic Z,Petersen KK,Dolstra O,Martín A. Identification of QTLs associated with yield and its components in Miscanthus sinensis Anderss.[J]. Euphytica,2003,132 (3):353−361. doi: 10.1023/A:1025041926259
|
[110] |
Atienza SG,Satovic Z,Petersen KK,Dolstra O,Martín A. Influencing combustion quality in Miscanthus sinensis Anderss. :identification of QTLs for calcium,phosphorus and sulphur content[J]. Plant Breeding,2003,122 (2):141−145. doi: 10.1046/j.1439-0523.2003.00826.x
|
[111] |
Gifford JM,Chae WB,Swaminathan K,Moose SP,Juvik JA. Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity[J]. GCB Bioenergy,2015,7 (4):797−810. doi: 10.1111/gcbb.12201
|
[112] |
Ma XF,Jensen E,Alexandrov N,Troukhan M,Zhang LP,et al. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis[J]. PLoS One,2012,7 (3):e33821. doi: 10.1371/journal.pone.0033821
|
[113] |
Kim C,Zhang D,Auckland SA,Rainville LK,Jakob K,et al. SSR-based genetic maps of Miscanthus sinensis and M. sacchariflorus,and their comparison to sorghum[J]. Theor Appl Genet,2012,124 (7):1325−1338. doi: 10.1007/s00122-012-1790-1
|
[114] |
Liu SY,Clark LV,Swaminathan K,Gifford JM,Juvik JA,Sacks EJ. High-density genetic map of Miscanthus sinensis reveals inheritance of zebra stripe[J]. GCB Bioenergy,2016,8 (3):616−630. doi: 10.1111/gcbb.12275
|
[115] |
Ge CX,Ai X,Jia SF,Yang YQ,Che L,et al. Interspecific genetic maps in Miscanthus floridulus and M. sacchariflorus accelerate detection of QTLs associated with plant height and inflorescence[J]. Mol Genet Genomics,2019,294 (1):35−45. doi: 10.1007/s00438-018-1486-6
|
[116] |
Jensen E,Shafiei R,Ma XF,Serba DD,Smith DP,et al. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C4 rhizomatous grasses Miscanthus and switchgrass[J]. GCB Bioenergy,2021,13 (1):98−111. doi: 10.1111/gcbb.12755
|
[117] |
Nie G,Huang LK,Zhang XQ,Taylor M,Jiang YW,et al. Marker-trait association for biomass yield of potential bio-fuel feedstock Miscanthus sinensis from southwest China[J]. Front Plant Sci,2016,7:802.
|
[118] |
葛颂. 中国植物系统和进化生物学研究进展[J]. 生物多样性,2022,30(7):22385. doi: 10.17520/biods.2022385
Ge S. A review of recent studies of plant systematics and evolution in China[J]. Biodiversity Science,2022,30 (7):22385. doi: 10.17520/biods.2022385
|
[119] |
Sun YQ,Shang LG,Zhu QH,Fan LJ,Guo LB. Twenty years of plant genome sequencing:achievements and challenges[J]. Trends Plant Sci,2022,27 (4):391−401. doi: 10.1016/j.tplants.2021.10.006
|
[120] |
Mitros T,Session AM,James BT,Wu GA,Belaffif MB,et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus[J]. Nat Commun,2020,11 (1):5442. doi: 10.1038/s41467-020-18923-6
|
[121] |
Miao JS,Feng Q,Li Y,Zhao Q,Zhou CC,et al. Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome[J]. Nat Commun,2021,12 (1):2458. doi: 10.1038/s41467-021-22738-4
|
[1] | Liu Zheng-Wei, Xiao Bin, Zhu Hong-Lian, Kuang Jing, Ji Qun, Peng Jing, Li Feng, Sun Ya-Lin, Ke Wei-dong. Genetic diversity and population structure of wild lotus (Nelumbo nucifera Gaertn.) in China[J]. Plant Science Journal, 2021, 39(3): 278-287. DOI: 10.11913/PSJ.2095-0837.2021.30278 |
[2] | Li Wen-Yue, Lin Chun-Jing, Ding Xiao-Yang, Han Ya-Li, Peng Bao, Zhao Li-Mei, Zhang Chun-Bao. An improved method to extract Glycine max mitochondrial DNA[J]. Plant Science Journal, 2018, 36(6): 888-892. DOI: 10.11913/PSJ.2095-0837.2018.60888 |
[3] | Peng Li-Ping, Cheng Fang-Yun, Zhong Yuan, Xu Xing-Xing, Xian Hong-Li. Phenotypic variation in cultivar populations of Paeonia ostii T. Hong et J. X. Zhang[J]. Plant Science Journal, 2018, 36(2): 170-180. DOI: 10.11913/PSJ.2095-0837.2018.20170 |
[4] | PENG Chun-Qiao, ZHAO Xue-Li, GAO Xin-Fen. Study on the Population Genetics of Indigofera decora Complex Based on cpDNA and nrDNA ITS Sequences[J]. Plant Science Journal, 2015, 33(4): 425-437. DOI: 10.11913/PSJ.2095-0837.2015.40425 |
[5] | LIANG Qiong, ZHANG Yan-Jun, XU Yan-Qun, HUANG Hong-Wen, WANG Ying. Morphological Variations and Genetic Diversity of Epimedium sagittatum Populations[J]. Plant Science Journal, 2013, 31(4): 422-427. DOI: 10.3724/SP.J.1142.2013.40422 |
[6] | ZHANG Da-Le, SHI Yong-Chun, LI Suo-Ping. Genetic Variation Analysis by RAPD of Beer Barley in China[J]. Plant Science Journal, 2005, 23(4): 305-309. |
[7] | YAN Bo-Qian, QIN Ling, LI Zuo-Zhou, HUANG Hong-Wen. Spatial Autocorrelation of Population Genetic Structure of Cryphonectria parasitica in China[J]. Plant Science Journal, 2003, 21(3): 238-244. |
[8] | XIANG Zhi-Qiang, LIU Yu-Cheng, DU Dao-Lin. Genetic Diversity and Population Differentiation of Cephalotaxus mannii Hk.f.Populations[J]. Plant Science Journal, 2001, 19(3): 220-224. |
[9] | LUO Ding-Ze, HOU Xin, ZHAO Zuo-Cheng. Genetic Diversity of Fagopyrum urophyllum Populations in Southwest China[J]. Plant Science Journal, 2001, 19(2): 107-112. |
[10] | Huang Hongwen. CONSERVATION GENETICS AND STRATEGY FOR PLANT GENETIC RESOURCES[J]. Plant Science Journal, 1998, 16(4): 346-358. |
1. |
傅俊士,南丽丽,张泽龙,吴世文,陈孝善. 21份猫尾草种子形态特征及SSR遗传多样性评价. 中国草地学报. 2024(09): 23-33 .
![]() | |
2. |
张卓亿,谢晓方,王霞,谢旖,谭欣懿,肖淑媛. 芦苇、南荻在食用菌栽培中的基质化利用研究进展. 北方园艺. 2024(24): 113-121 .
![]() |