Advance Search
Liu SJ,Ouyang XL,Yang AH,Liu TY,Liu LP,Zhou H. Growth and physiological response of Cinnamomum camphora (L.) Presl to copper stress and analysis of copper enrichment and transport characteristics[J]. Plant Science Journal,2024,42(2):232−241. DOI: 10.11913/PSJ.2095-0837.23152
Citation: Liu SJ,Ouyang XL,Yang AH,Liu TY,Liu LP,Zhou H. Growth and physiological response of Cinnamomum camphora (L.) Presl to copper stress and analysis of copper enrichment and transport characteristics[J]. Plant Science Journal,2024,42(2):232−241. DOI: 10.11913/PSJ.2095-0837.23152

Growth and physiological response of Cinnamomum camphora (L.) Presl to copper stress and analysis of copper enrichment and transport characteristics

More Information
  • Received Date: May 24, 2023
  • Accepted Date: June 28, 2023
  • This study investigated copper-resistant Cinnamomum camphora (L.) Presl in the restoration of a copper-polluted mining area through pot simulation experiments. Six treatment concentrations were established (50, 150, 300, 600, 900, and 1 200 mg/kg), with no copper addition used as the control (CK). After 60 d of treatment, biomass accumulation, chlorophyll content, physiological and biochemical indexes of C. camphora, and copper ion accumulation and transfer were measured. The impact of different copper concentrations on growth, physiological, and biochemical responses in C. camphora, as well as the patterns of copper accumulation and distribution in various tissues, were explored to evaluate copper tolerance in this species. Results showed that C. camphora growth under copper stress was enhanced at low copper concentrations (150 mg/kg) and inhibited at high copper concentrations. Physiological indicators, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), hydrogen peroxide (H2O2), free proline, and soluble sugar, did not significantly increase under 900 mg/kg copper treatment. glutathione reductase (GR) decreased gradually with the increase of copper concentration, while malondialdehyde (MDA) and glutathione (GSH) contents increased gradually with the increase of copper concentration. Copper was predominantly accumulated in the roots, minimizing toxicity to above-ground tissues, with organ copper content in the order root > leaf > stem. The copper transfer rate (IF) from root to leaf (leaf/root) decreased from 0.078 in the control to 0.007 in the 1 200 mg/kg copper treatment group, while the copper transfer rate (IF) from root to stem (Stem/Root) decreased from 0.06 in the control to 0.005 in the 1 200 mg/kg copper treatment group. Based on growth performance, physiological responses, and copper ion accumulation and transfer, C. camphora exhibited good copper tolerance, withstanding up to 900 mg/kg, highlighting its potential for planting in copper-contaminated soils.

  • [1]
    Zhou JH,Cheng K,Zheng JY,Liu ZQ,Shen WB,et al. Physiological and biochemical characteristics of Cinnamomum camphora in response to Cu-and Cd-contaminated soil[J]. Water Air Soil Pollut,2019,230(1):15. doi: 10.1007/s11270-018-4048-y
    [2]
    朱志军,聂逢君,胡青华. 江西省德兴矿区土壤重金属污染的综合评价分析[J]. 东华理工学院学报,2007,30(4):332−336.

    Zhu ZJ,Nie FJ,Hu QH. Analysis of soil pollution by heavy metals in Dexing mining area,Jiangxi province[J]. Journal of East China Institute of Technology,2007,30(4):332−336.
    [3]
    陈翠华,倪师军,何彬彬,张成江. 江西德兴矿集区土壤重金属污染分析[J]. 地球与环境,2007,35(2):134−141. doi: 10.3969/j.issn.1672-9250.2007.02.007

    Chen CH,Ni SJ,He BB,Zhang CJ. Heavy metals contamination of soils of in Dexing Mine,Jiangxi Province,China[J]. Earth and Environment,2007,35(2):134−141. doi: 10.3969/j.issn.1672-9250.2007.02.007
    [4]
    Dhaliwal SS,Singh J,Taneja PK,Mandal A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources:a review[J]. Environ Sci Pollut Res,2020,27(2):1319−1333. doi: 10.1007/s11356-019-06967-1
    [5]
    Chandrasekhar C,Ray JG. Lead accumulation,growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate[J]. Ecotoxicol Environ Saf,2019,171:26−36. doi: 10.1016/j.ecoenv.2018.12.058
    [6]
    Jaffré T,Pillon Y,Thomine S,Merlot S. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants[J]. Front Plant Sci,2013,4:279.
    [7]
    段亚萍,赵冰,付丽童,李雨倩,张瑛. 铅、锌污染下蜀葵的生长生理响应和富集转运特性研究[J]. 草地学报,2022,30(2):418−425.

    Duan YP,Zhao B,Fu LT,Li YQ,Zhang Y. Study on growth,physiological response and accumulation,transport characteristics of Alcea rosea (L. ) Cavan. under lead and zinc pollution[J]. Acta Agrestia Sinica,2022,30(2):418−425.
    [8]
    Yu G,Ullah H,Wang XS,Liu J,Chen BL,et al. Integrated transcriptome and metabolome analysis reveals the mechanism of tolerance to manganese and cadmium toxicity in the Mn/Cd hyperaccumulator Celosia argentea L.[J]. J Hazard Mater,2023,443:130206. doi: 10.1016/j.jhazmat.2022.130206
    [9]
    孙小艳,辛在军,刘淑娟,李晓晖,刘建平. 不同中国鹅掌楸种源对镉吸收分配特性研究[J]. 江西农业大学学报,2020,42(6):1285−1291.

    Sun XY,Xin ZJ,Liu SJ,Li XH,Liu JP. Characteristics of cadmium absorption and distribution in different provenances of Liriodendron chinense[J]. Acta Agriculturae Universitatis Jiangxiensis,2020,42(6):1285−1291.
    [10]
    李彩霞,朱国强,彭坤. 绿化带土壤重金属污染特征及植物富集研究——以长沙市为例[J]. 中南林业科技大学学报,2016,36(10):101−107.

    Li CX,Zhu GQ,Peng K. Study on soil pollution characteristics by heavy metals and the plant concentration in green belts[J]. Journal of Central South University of Forestry & Technology,2016,36(10):101−107.
    [11]
    施海涛. 植物逆境生理学实验指导[M]. 北京: 科学出版社, 2016: 57-74.
    [12]
    于静波. Cd、Pb及其复合胁迫对樟树生理特性的影响[D]. 福州: 福建农林大学, 2012: 1-53.
    [13]
    施浩威. 铜、锌胁迫对芳樟幼苗生长的影响[D]. 南昌: 南昌工程学院, 2018: 1-35.
    [14]
    王利宝,朱宁华,鄂建华. Pb、Zn等重金属对樟树、栾树幼苗生长的影响[J]. 中南林业科技大学学报,2010,30(2):44−47. doi: 10.3969/j.issn.1673-923X.2010.02.008

    Wang LB,Zhu NH,E JH. Effects of heavy matels lead,zinc and copper on young seedling growth of Cinnamomum camphora and Koelreuteria paniculata[J]. Journal of Central South University of Forestry & Technology,2010,30(2):44−47. doi: 10.3969/j.issn.1673-923X.2010.02.008
    [15]
    王丽红,陈惠茹,周青. 铜与锌对香樟、广玉兰及榉树生理生化特性的复合影响[J]. 生态环境学报,2013,22(11):1819−1824. doi: 10.3969/j.issn.1674-5906.2013.11.013

    Wang LH,Chen HR,Zhou Q. Combined effects of copper,zinc on physiological and biochemical characteristics of Magnolia grandiflora,Cinnamomum camphora and Zelkova schneideriana[J]. Ecology and Environmental Sciences,2013,22(11):1819−1824. doi: 10.3969/j.issn.1674-5906.2013.11.013
    [16]
    李红. 铜对芥菜与小白菜萌发和生长的影响研究[D]. 杨凌: 西北农林科技大学, 2009: 22-58.
    [17]
    黄强,司菲斐,符桢华,刘伟涛,薛长雷. Cu胁迫对小白菜生理生化特性的影响[J]. 现代食品科技,2008,24(11):1111−1114.

    Huang Q,Si FF,Fu ZH,Liu WT,Xue CL. The effects of Cu treatment on the physiological and biochemical characters of Brassica campestris ssp. Chinensis[J]. Modern Food Science and Technology,2008,24(11):1111−1114.
    [18]
    胡筑兵,陈亚华,王桂萍,沈振国. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响[J]. 植物学通报,2006,23(2):129−137.

    Hu ZB,Chen YH,Wang GP,Shen ZG. Effects of copper stress on growth,chlorophyll fluorescence parameters and antioxidant enzyme activities of Zea mays seedlings[J]. Chinese Bulletin of Botany,2006,23(2):129−137.
    [19]
    Appenroth KJ,Krech K,Keresztes Á,Fischer W,Koloczek H. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation[J]. Chemosphere,2010,78(3):216−223. doi: 10.1016/j.chemosphere.2009.11.007
    [20]
    袁霞,李艳梅,张兴昌. 铜对小青菜生长和叶片保护酶活性的影响[J]. 农业环境科学学报,2008,27(2):467−471. doi: 10.3321/j.issn:1672-2043.2008.02.012

    Yuan X,Li YM,Zhang XC. Effect of copper addition on the growth and the activities of protective enzymes in leaves of Brassica chinensis[J]. Journal of Agro-Environment Science,2008,27(2):467−471. doi: 10.3321/j.issn:1672-2043.2008.02.012
    [21]
    李炎林,唐前瑞,张宏志,李达,熊兴耀,于晓英. Cu2+浓度对红檵木生理生化特性的影响[J]. 经济林研究,2009,27(1):65−68. doi: 10.3969/j.issn.1003-8981.2009.01.014

    Li YL,Tang QR,Zhang HZ,Li D,Xiong XY,Yu XY. Effect of copper ion concentration on physiological and biochemical characteristics of Loropetalum chinense var. rubrum[J]. Nonwood Forest Research,2009,27(1):65−68. doi: 10.3969/j.issn.1003-8981.2009.01.014
    [22]
    朱成豪,唐健民,高丽梅,邹蓉,史艳财,等. 重金属铜、锌、镉复合胁迫对麻疯树幼苗生理生化的影响[J]. 广西植物,2019,39(6):752−760. doi: 10.11931/guihaia.gxzw201803009

    Zhu CH,Tang JM,Gao LM,Zou R,Shi YC,et al. Effects of combined stress of heavy metals Cu,Zn and Cd on physiology and biochemistry of Jatropha curcas seedlings[J]. Guihaia,2019,39(6):752−760. doi: 10.11931/guihaia.gxzw201803009
    [23]
    金进,叶亚新,李丹,韩乐. 重金属铜对玉米的影响[J]. 玉米科学,2006,14(3):83−86. doi: 10.3969/j.issn.1005-0906.2006.03.024

    Jin J,Ye YX,Li D,Han L. Effect of heavy metal (copper) coercion on maize[J]. Journal of Maize Sciences,2006,14(3):83−86. doi: 10.3969/j.issn.1005-0906.2006.03.024
    [24]
    张国军,邱栋梁,刘星辉. Cu对植物毒害研究进展[J]. 福建农林大学学报(自然科学版),2004,33(3):289−294. doi: 10.3321/j.issn:1671-5470.2004.03.005

    Zhang GJ,Qiu DL,Liu XH. Advances in copper toxicity to plants[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition),2004,33(3):289−294. doi: 10.3321/j.issn:1671-5470.2004.03.005
    [25]
    张莉,徐彦红,张淑炜,刘宇宇,席溢. 两种草坪草单种与混种对铅-锌-镉复合污染的生理响应[J]. 草地学报,2022,30(10):2635−2644.

    Zhang L,Xu YH,Zhang SW,Liu YY,Xi Y. Physiological response to Pb-Zn-Cd compound pollution under single- and mixed-sowing of two turfgrass species[J]. Acta Agrestia Sinica,2022,30(10):2635−2644.
    [26]
    Tewari RK,Kumar P,Sharma PN,Bisht SS. Modulation of oxidative stress responsive enzymes by excess cobalt[J]. Plant Sci,2002,162(3):381−388. doi: 10.1016/S0168-9452(01)00578-7
    [27]
    凌宇,龙江宇,项远航,范吉标. 镉胁迫对高羊茅和匍匐翦股颖抗逆生理特性的影响[J]. 植物科学学报,2022,40(5):705−713.

    Ling Y,Long JY,Xiang YH,Fan JB. Effects of cadmium stress on physiological characteristics of resilience in Festuca arundinacea L. and Agrostis stolonifera L.[J]. Plant Science Journal,2022,40(5):705−713.
    [28]
    Kaur G,Singh HP,Batish DR,Kohli RK. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions(Pb2+)[J]. Protoplasma,2012,249(4):1091−1100. doi: 10.1007/s00709-011-0353-7
    [29]
    刘周莉,何兴元,陈玮. 镉胁迫对金银花生理生态特征的影响[J]. 应用生态学报,2009,20(1):40−44.

    Liu ZL,He XY,Chen W. Effects of cadmium stress on the growth and physiological characteristics of Lonicera japonica[J]. Chinese Journal of Applied Ecology,2009,20(1):40−44.
    [30]
    冯世座,刘合芹. 极端温度对籼粳稻苗期光合特性及生理生化特性的影响[J]. 浙江师范大学学报(自然科学版),2012,35(3):330−337. doi: 10.3969/j.issn.1001-5051.2012.03.019

    Feng SZ,Liu HQ. Effects of extreme temperature on photosynthetic and physio-biochemical characteristics of indica and japonica rice seedlings[J]. Journal of Zhejiang Normal University(Natural Sciences),2012,35(3):330−337. doi: 10.3969/j.issn.1001-5051.2012.03.019
    [31]
    蔡雄伟. 铅胁迫对狗牙根叶片中游离脯氨酸及丙二醛含量的影响[J]. 四川农业科技,2018(5):44−46. doi: 10.3969/j.issn.1004-1028.2018.05.016
    [32]
    吴静,袁平成. 高温处理对3种香草植物生理生化特性的影响[J]. 江汉大学学报(自然科学版),2021,49(6):42−47.

    Wu J,Yuan PC. Effects of high temperature treatment on the physiological and biochemical characteristics of three aromatic plants[J]. Journal of Jianghan University (Natural Science Edition),2021,49(6):42−47.
    [33]
    刘家尧,衣艳君,张其德. 盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响[J]. 植物学通报,1998,15(2):46−49.

    Liu JY,Yi YJ,Zhang QD. Effects of salt stress on chlorophyll a fluorescence induction kinetics in wheat leaves with different salt tolerance[J]. Chinese Bulletin of Botany,1998,15(2):46−49.
    [34]
    袁俊,盛莎莎,刘荣鹏,王晓云. 镉胁迫对丹参生理特性和代谢特征的影响[J]. 植物科学学报,2022,40(3):408−417. doi: 10.11913/PSJ.2095-0837.2022.30408

    Yuan J,Sheng SS,Liu RP,Wang XY. Effects of cadmium on physiological characteristics and metabolic profiles of Salvia miltiorrhiza Bunge[J]. Plant Science Journal,2022,40(3):408−417. doi: 10.11913/PSJ.2095-0837.2022.30408
    [35]
    Blokhina O,Virolainen E,Fagerstedt KV. Antioxidants,oxidative damage and oxygen deprivation stress:a review[J]. Ann Bot,2003,91(2):179−194. doi: 10.1093/aob/mcf118
    [36]
    Song JJC,Li YY,Tang H,Qiu CS,Lei L,et al. Application potential of Vaccinium ashei R. for cadmium migration retention in the mining area soil[J]. Chemosphere,2023,324:138346. doi: 10.1016/j.chemosphere.2023.138346
    [37]
    吴照祥,孙小艳,刘腾云,余发新,李晓晖,周静. 中、轻度污染农田杂交水稻对Cd的吸收和累积分布[J]. 江西农业大学学报,2019,41(3):423−430.

    Wu ZX,Sun XY,Liu TY,Yu FX,Li XH,Zhou J. Cd accumulation,distribution and transport in varieties of hybrid rice grown in medium to low Cd-polluted farmland[J]. Acta Agriculturae Universitatis Jiangxiensis,2019,41(3):423−430.
    [38]
    朱宇恩,赵烨,徐东昱,闫冬,呼红霞,李永良. 旱柳(Salix matsudana Koidz)体内Cu迁移特征的水培模拟研究[J]. 环境科学学报,2011,31(12):2740−2747.

    Zhu YE,Zhao Y,Xu DY,Yan D,Hu HX,Li YL. Investigation on the characteristics of copper migration in different tissues of Salix matsudana Koidz based on hydroponic experiment[J]. Acta Scientiae Circumstantiae,2011,31(12):2740−2747.
    [39]
    Yu M,Zhuo RY,Lu ZC,Li SC,Chen JJ,et al. Molecular insights into lignin biosynthesis on cadmium tolerance:morphology,transcriptome and proteome profiling in Salix matsudana[J]. J Hazard Mater,2023,441:129909. doi: 10.1016/j.jhazmat.2022.129909
    [40]
    Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance[J]. J Exp Bot,2002,53(366):1−11.
    [41]
    Grill E,Winnacker EL,Zenk MH. Phytochelatins:the principal heavy-metal complexing peptides of higher plants[J]. Science,1985,230(4726):674−676. doi: 10.1126/science.230.4726.674

Catalog

    Article views (126) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return