Advance Search
Jiang HS,Liao ZY,Li W. Photosynthetic inorganic carbon utilization strategies and their ecological adaptability in aquatic plants[J]. Plant Science Journal,2023,41(6):847−856. DOI: 10.11913/PSJ.2095-0837.23171
Citation: Jiang HS,Liao ZY,Li W. Photosynthetic inorganic carbon utilization strategies and their ecological adaptability in aquatic plants[J]. Plant Science Journal,2023,41(6):847−856. DOI: 10.11913/PSJ.2095-0837.23171

Photosynthetic inorganic carbon utilization strategies and their ecological adaptability in aquatic plants

Funds: This work was supported by grants from the National Natural Science Foundation of China (32120103002, 42277277) and Youth Innovation Promotion Association CAS (2021340).
More Information
  • Received Date: June 07, 2023
  • Revised Date: September 26, 2023
  • Aquatic vascular plants have undergone an evolutionary transition from terrestrial to aquatic habitats, necessitating substantial adaptations to their surrounding environments. In particular, the different inorganic carbon environments between underwater and terrestrial habitats confer distinct ecological significance to the photosynthetic inorganic carbon utilization strategies of both plant types. This paper elucidates the particularity and diversity of inorganic carbon utilization strategies in aquatic plants and the significance of these studies. In addition, the potential advantages in studying plant adaptation mechanisms based on inorganic carbon utilization strategies in aquatic plants (especially Hydrocharitaceae) is analyzed. Overall, this paper aims to provide a novel perspective for studying the adaptative mechanisms and evolutionary processes of aquatic plants, as well as new directions for research in this field.

  • [1]
    Les DH,Philbrick CT. Studies of hybridization and chromosome number variation in aquatic angiosperms:evolutionary implications[J]. Aquat Bot,1993,44 (2-3):181−228. doi: 10.1016/0304-3770(93)90071-4
    [2]
    Den Hartog C, Kuo J. Taxonomy and biogeography of seagrasses[M]//Larkum AWD, Orth RJ, Duarte CM, eds. Seagrasse: Biology, Ecology and Conservation. Berlin Heidelberg: Springer, 2006: 1-23.
    [3]
    Cook CD. Aquatic Plant Book[M]. The Hague: SPB Academic Publishing, 1990: 1-7
    [4]
    Les DH,Cleland MA,Waycott M. Phylogenetic studies in Alismatidae,Ⅱ:evolution of marine angiosperms (seagrasses) and hydrophily[J]. Syst Bot,1997,22 (3):443−463. doi: 10.2307/2419820
    [5]
    Friis EM,Pedersen KR,Crane PR. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous[J]. Nature,2001,410 (6826):357−360. doi: 10.1038/35066557
    [6]
    Gomez B,Daviero-Gomez V,Coiffard C,Martín-Closas C,Dilcher DL. Montsechia,an ancient aquatic angiosperm[J]. Proc Natl Acad Sci USA,2015,112 (35):10985−10988. doi: 10.1073/pnas.1509241112
    [7]
    Les DH. Water from the rock:ancient aquatic angiosperms flow from the fossil record[J]. Proc Natl Acad Sci USA,2015,112 (35):10825−10826. doi: 10.1073/pnas.1514280112
    [8]
    Philbrick CT,Les DH. Evolution of aquatic angiosperm reproductive systems[J]. BioScience,1996,46 (11):813−826. doi: 10.2307/1312967
    [9]
    Les DH, Tippery NP. In time and with water … the systematics of alismatid monocotyledons[M]//Wilkin P, Mayo SJ, eds. Early Events in Monocot Evolution. Cambridge: Cambridge University Press, 2013: 1-100.
    [10]
    Maberly SC,Spence DHN. Photosynthesis and photorespiration in freshwater organisms:amphibious plants[J]. Aquat Bot,1989,34 (1-3):267−286. doi: 10.1016/0304-3770(89)90059-4
    [11]
    Santamaría L. Why are most aquatic plants widely distributed? Dispersal,clonal growth and small-scale heterogeneity in a stressful environment[J]. Acta Oecol,2002,23 (3):137−154. doi: 10.1016/S1146-609X(02)01146-3
    [12]
    Li W. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants[J]. Aquat Bot,2014,118:62−70. doi: 10.1016/j.aquabot.2014.07.008
    [13]
    Maberly SC. The fitness of the environments of air and water for photosynthesis,growth,reproduction and dispersal of photoautotrophs:an evolutionary and biogeochemical perspective[J]. Aquat Bot,2014,118:4−13. doi: 10.1016/j.aquabot.2014.06.014
    [14]
    Maberly SC, Gontero B. Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments[M]//Adams Ⅲ WW, Terashima I, eds. The Leaf: A platform for Performing Photosynthesis. Chambrige: Springer, 2018: 307-343.
    [15]
    沈允钢, 施教耐, 许大全. 动态光合作用[M]. 北京: 科学出版社, 1998: 1-6.
    [16]
    Niklaus M,Kelly S. The molecular evolution of C4 photosynthesis:opportunities for understanding and improving the world's most productive plants[J]. J Exp Bot,2019,70 (3):795−804. doi: 10.1093/jxb/ery416
    [17]
    Raven JA,Cockell CS,de La Rocha CL. The evolution of inorganic carbon concentrating mechanisms in photosynthesis[J]. Philos Trans Roy Soc B:Biol Sci,2008,363 (1504):2641−2650. doi: 10.1098/rstb.2008.0020
    [18]
    Sage RF. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery:species number,evolutionary lineages,and Hall of Fame[J]. J Exp Bot,2016,67 (14):4039−4056. doi: 10.1093/jxb/erw156
    [19]
    Silvera K,Neubig KM,Whitten WM,Williams NH,Winter K,Cushman JC. Evolution along the crassulacean acid metabolism continuum[J]. Funct Plant Biol,2010,37 (11):995−1010. doi: 10.1071/FP10084
    [20]
    Sage RF. Are crassulacean acid metabolism and C4 photosynthesis incompatible?[J]. Funct Plant Biol,2002,29 (6):775−785. doi: 10.1071/PP01217
    [21]
    Winter K, Smith JAC. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution[M]. Berlin Heidelberg: Springer, 1996: 19-420.
    [22]
    Sage RF, Monson RK. C4 Plant Biology[M]. San Diego: Academic Press, 1998: 10-375.
    [23]
    Keeley JE,Rundel PW. Evolution of CAM and C4 carbon-concentrating mechanisms[J]. Int J Plant Sci,2003,164 (S3):S55−S77. doi: 10.1086/374192
    [24]
    Griffiths H. Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes[M]//Lüttge U, ed. Vascular Plants as Epiphytes: Evolution and Ecophysiology. Berlin Heidelberg: Springer, 1989: 42-86.
    [25]
    Sage RF. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome[J]. Plant Biol,2001,3 (3):202−213. doi: 10.1055/s-2001-15206
    [26]
    Hatch MD,Slack CR. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation[J]. Biochem J,1966,101 (1):103−111. doi: 10.1042/bj1010103
    [27]
    Raghavendra AS, Sage RF. C4 Photosynthesis and Related CO2 Concentrating Mechanisms[M]. Media: Springer, 2011: 161-195.
    [28]
    Cushman JC,Bohnert HJ. CRASSULACEAN ACID METABOLISM:molecular genetics[J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:305−332. doi: 10.1146/annurev.arplant.50.1.305
    [29]
    Raven JA. Nutrient transport in microalgae[J]. Adv Microb Physiol,1981,21:47−226.
    [30]
    Raven JA,Giordano M,Beardall J. Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes[J]. Physiol Plant,2008,133 (1):4−14. doi: 10.1111/j.1399-3054.2007.01024.x
    [31]
    Sage RF. The evolution of C4 photosynthesis[J]. New Phytol,2004,161 (2):341−370. doi: 10.1111/j.1469-8137.2004.00974.x
    [32]
    Black CC Jr. Photosynthetic carbon fixation in relation to net CO2 uptake[J]. Ann Rev Plant Physiol,1973,24:253−286. doi: 10.1146/annurev.pp.24.060173.001345
    [33]
    Han HE,Felker P. Field validation of water-use efficiency of the CAM plant Opuntia ellisianain south Texas[J]. J Arid Environ,1997,36 (1):133−148. doi: 10.1006/jare.1996.0202
    [34]
    Pearson PN,Palmer MR. Atmospheric carbon dioxide concentrations over the past 60 million years[J]. Nature,2000,406 (6797):695−699. doi: 10.1038/35021000
    [35]
    Maberly SC,Gontero B. Ecological imperatives for aquatic CO2 concentrating mechanisms[J]. J Exp Bot,2017,68 (14):3797−3814. doi: 10.1093/jxb/erx201
    [36]
    Raven JA. Exogenous inorganic carbon sources in plant photosynthesis[J]. Biol Rev,1970,45 (2):167−220. doi: 10.1111/j.1469-185X.1970.tb01629.x
    [37]
    Raven JA,Beardall J. CO2 concentrating mechanisms and environmental change[J]. Aquat Bot,2014,118:24−37. doi: 10.1016/j.aquabot.2014.05.008
    [38]
    Maberly SC,Spence DHN. Photosynthetic inorganic carbon use by freshwater plants[J]. J Ecol,1983,71 (3):705−724. doi: 10.2307/2259587
    [39]
    Cole JJ,Caraco NF,Kling GW,Kratz TK. Carbon dioxide supersaturation in the surface waters of lakes[J]. Science,1994,265 (5178):1568−1570. doi: 10.1126/science.265.5178.1568
    [40]
    Madsen TV,Sand-Jensen K. Photosynthetic carbon assimilation in aquatic macrophytes[J]. Aquat Bot,1991,41 (1-3):5−40. doi: 10.1016/0304-3770(91)90037-6
    [41]
    Maberly SC,Madsen TV. Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3[J]. Funct Ecol,1998,12 (1):99−106. doi: 10.1046/j.1365-2435.1998.00172.x
    [42]
    Maberly SC,Madsen TV. Freshwater angiosperm carbon concentrating mechanisms:processes and patterns[J]. Funct Plant Biol,2002,29 (3):393−405. doi: 10.1071/PP01187
    [43]
    Klavsen SK,Maberly SC. Effect of light and CO2 on inorganic carbon uptake in the invasive aquatic CAM-plant Crassula helmsii[J]. Funct Plant Biol,2010,37 (8):737−747. doi: 10.1071/FP09281
    [44]
    Klavsen SK,Madsen TV,Maberly SC. Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants:a review[J]. Photosynth Res,2011,109 (1-3):269−279. doi: 10.1007/s11120-011-9630-8
    [45]
    Zhang YZ,Yin LY,Jiang HS,Li W,Gontero B,Maberly SC. Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae)[J]. Photosynth Res,2014,121 (2-3):285−297. doi: 10.1007/s11120-013-9950-y
    [46]
    Maberly SC,Stott AW,Gontero B. The differential ability of two species of seagrass to use carbon dioxide and bicarbonate and their modelled response to rising concentrations of inorganic carbon[J]. Front Plant Sci,2022,13:936716. doi: 10.3389/fpls.2022.936716
    [47]
    Wickell D,Kuo LY,Yang HP,Ashok AD,Irisarri I,et al. Underwater CAM photosynthesis elucidated by Isoetes genome[J]. Nat Commun,2021,12 (1):6348. doi: 10.1038/s41467-021-26644-7
    [48]
    Huang WM,Han SJ,Jiang HS,Gu SP,Li W,et al. External α-carbonic anhydrase and solute carrier 4 are required for bicarbonate uptake in a freshwater angiosperm[J]. J Exp Bot,2020,71 (19):6004−6014. doi: 10.1093/jxb/eraa351
    [49]
    Magnin NC,Cooley BA,Reiskind JB,Bowes G. Regulation and localization of key enzymes during the induction of Kranz-less,C4-type photosynthesis in Hydrilla verticillata[J]. Plant Physiol,1997,115 (4):1681−1689. doi: 10.1104/pp.115.4.1681
    [50]
    Iversen LL,Winkel A,Baastrup-Spohr L,Hinke AB,Alahuhta J,et al. Catchment properties and the photosynthetic trait composition of freshwater plant communities[J]. Science,2019,366 (6467):878−881. doi: 10.1126/science.aay5945
    [51]
    Maberly SC. Photosynthesis by Fontinalis antipyretica[J]. New Phytol,1985,100 (2):127−140. doi: 10.1111/j.1469-8137.1985.tb02765.x
    [52]
    Maberly SC. Photosynthesis by Fontinalis antipyretica. Ⅱ. Assessment of environmental factors limiting photosynthesis and production[J]. New Phytol,1985,100 (2):141−155. doi: 10.1111/j.1469-8137.1985.tb02766.x
    [53]
    Pedersen O,Pulido C,Rich SM,Colmer TD. In situ O2 dynamics in submerged Isoetes australis:varied leaf gas permeability influences underwater photosynthesis and internal O2[J]. J Exp Bot,2011,62 (13):4691−4700. doi: 10.1093/jxb/err193
    [54]
    Casati P,Lara MV,Andreo CS. Induction of a C4-like mechanism of CO2 fixation in Egeria densa,a submersed aquatic species[J]. Plant Physiol,2000,123 (4):1611−1622. doi: 10.1104/pp.123.4.1611
    [55]
    Keeley JE. Isoetes howellii:a submerged aquatic CAM plant?[J]. Am J Bot,1981,68 (3):420−424. doi: 10.1002/j.1537-2197.1981.tb06380.x
    [56]
    Yin LY,Li W,Madsen TV,Maberly SC,Bowes G. Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes[J]. Aquat Bot,2017,140:48−54. doi: 10.1016/j.aquabot.2016.05.002
    [57]
    Beilby MJ,Bisson MA,Schneider SC. How Characean algae take up needed and excrete unwanted ions: an overview explaining how insights from electrophysiology are useful to understand the ecology of aquatic macrophytes[J]. Aquat Bot,2022,181:103542. doi: 10.1016/j.aquabot.2022.103542
    [58]
    Wang Q. Hydrocharitaceae[M]//Flora of China. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press, 2010: 91-102.
    [59]
    Chen LY,Chen JM,Gituru RW,Wang QF. Generic phylogeny,historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae[J]. BMC Evol Biol,2012,12:30. doi: 10.1186/1471-2148-12-30
    [60]
    Chen LY,Chen JM,Gituru RW,Wang QF. Eurasian origin of Alismatidae inferred from statistical dispersal-vicariance analysis[J]. Mol Phylogenet Evol,2013,67 (1):38−42. doi: 10.1016/j.ympev.2013.01.001
    [61]
    Olsen JL,Rouzé P,Verhelst B,Lin YC,Bayer T,et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea[J]. Nature,2016,530 (7590):331−335. doi: 10.1038/nature16548
    [62]
    Cook CDK,Urmi-König K. A revision of the genus Egeria (Hydrocharitaceae)[J]. Aquat Bot,1984,19 (1-2):73−96. doi: 10.1016/0304-3770(84)90009-3
    [63]
    Li ZZ,Wu S,Zhou CY,Liu Y,Hu GW,et al. Ottelia fengshanensis,a new bisexual species of Ottelia (Hydrocharitaceae) from southwestern China[J]. PhytoKeys,2019,135:1−10. doi: 10.3897/phytokeys.135.38531
    [64]
    Li ZZ,Liao K,Zou CY,Liu Y,Hu GW,et al. Ottelia guanyangensis (Hydrocharitaceae),a new species from southwestern China[J]. Phytotaxa,2018,361 (3):294−300. doi: 10.11646/phytotaxa.361.3.5
    [65]
    Misra MP. Cytological studies in Ottelia alismoides pers[J]. Cytologia,1974,39 (3):419−427. doi: 10.1508/cytologia.39.419
    [66]
    Krishnappa DG. Cytological studies in some aquatic angiosperms[J]. Proc/Indian Acad Sci,1971,73 (4):179−185.
    [67]
    Chaudhuri JB,Sharma A. Cytological studies on three aquatic members of hydrocharitaceae in relation to their morphological and ecological characteristics[J]. Cytologia,1978,43 (1):1−19. doi: 10.1508/cytologia.43.1
    [68]
    Salvucci ME,Bowes G. Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes[J]. Plant Physiol,1981,67 (2):335−340. doi: 10.1104/pp.67.2.335
    [69]
    Salvucci ME,Bowes G. Ethoxyzolamide repression of the low photorespiration state in two submersed angiosperms[J]. Planta,1983,158 (1):27−34. doi: 10.1007/BF00395399
    [70]
    Shao H,Gontero B,Maberly SC,Jiang HS,Cao Y,et al. Responses of Ottelia alismoides,an aquatic plant with three CCMs,to variable CO2 and light[J]. J Exp Bot,2017,68 (14):3985−3995. doi: 10.1093/jxb/erx064
    [71]
    Pedersen O. Jack of all trades-C4 photosynthesis,CAM and HCO3 use in the same tissue. A commentary on:'Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides'[J]. Ann Bot,2020,125 (6):iv−vi. doi: 10.1093/aob/mcaa034
    [72]
    Han SJ,Maberly SC,Gontero B,Xing ZF,Li W,et al. Structural basis for C4 photosynthesis without Kranz anatomy in leaves of the submerged freshwater plant Ottelia alismoides[J]. Ann Bot,2020,125 (6):869−879. doi: 10.1093/aob/mcaa005
    [73]
    Reiskind JB,Madsen TV,Van Ginkel LC,Bowes G. Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla,a submersed monocot[J]. Plant Cell Environ,1997,20 (2):211−220. doi: 10.1046/j.1365-3040.1997.d01-68.x
    [74]
    Rao SK,Magnin NC,Reiskind JB,Bowes G. Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell,facultative C4 system of Hydrilla verticillata[J]. Plant Physiol,2002,130 (2):876−886. doi: 10.1104/pp.008045
    [75]
    Lara MV,Casati P,Andreo CS. CO2-concentrating mechanisms in Egeria densa,a submersed aquatic plant[J]. Physiol Plant,2002,115 (4):487−495. doi: 10.1034/j.1399-3054.2002.1150402.x
    [76]
    Luan WY,Li H,Zhang LT,Liu JG. Enhalus acoroides efficiently alleviate ocean acidification by shifting modes of inorganic carbon uptake and increasing photosynthesis when pH drops[J]. Mar Environ Res,2023,186:105896. doi: 10.1016/j.marenvres.2023.105896
    [77]
    Gavin NM,Durako MJ. Carbon acquisition mechanisms in Halophila johnsonii and Thalassia testudinum[J]. Aquat Bot,2019,152:64−69. doi: 10.1016/j.aquabot.2018.11.001
    [78]
    Holaday AS,Bowes G. C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata)[J]. Plant Physiol,1980,65 (2):331−335. doi: 10.1104/pp.65.2.331
    [79]
    Wang SN,Li PP,Liao ZY,Wang WW,Chen T,et al. Adaptation of inorganic carbon utilization strategies in submerged and floating leaves of heteroblastic plant Ottelia cordata[J]. Environ Exp Bot,2022,196:104818. doi: 10.1016/j.envexpbot.2022.104818
    [80]
    Cao Y,Liu Y,Ndirangu L,Li W,Xian L,Jiang HS. The analysis of leaf traits of eight Ottelia populations and their potential ecosystem functions in karst freshwaters in China[J]. Front Plant Sci,2019,9:1938. doi: 10.3389/fpls.2018.01938
    [81]
    Liao ZY,Li PP,Zhou JZ,Li W,Jiang HS. Different photosynthetic inorganic carbon utilization strategies in the heteroblastic leaves of an aquatic plant Ottelia ovalifolia[J]. Front Plant Sci,2023,14:1142848. doi: 10.3389/fpls.2023.1142848
    [82]
    Prins HBA,de Guia MB. Carbon source of the water soldier,Stratiotes aloides L.[J]. Aquat Bot,1986,26:225−234. doi: 10.1016/0304-3770(86)90023-9
    [83]
    Beer S,Waisel Y. Some photosynthetic carbon fixation properties of seagrasses[J]. Aquat Bot,1979,7:129−138. doi: 10.1016/0304-3770(79)90017-2
    [84]
    Benedict CR,Scott JR. Photosynthetic carbon metabolism of a marine grass[J]. Plant Physiol,1976,57 (6):876−880. doi: 10.1104/pp.57.6.876
    [85]
    Von Caemmerer S,Quick WP,Furbank RT. The development of C4 rice:current progress and future challenges[J]. Science,2012,336 (6089):1671−1672. doi: 10.1126/science.1220177
  • Related Articles

    [1]Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282
    [2]Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140
    [3]Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152
    [4]Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
    [5]ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487
    [6]CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394
    [7]SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346.
    [8]CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353
    [9]He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588.
    [10]CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266.
  • Cited by

    Periodical cited type(3)

    1. 贺文琪,柴国柱,薛矗,山晓丹,兰小中. 西藏11种菊科药用植物染色体核型研究. 种子. 2025(02): 190-201 .
    2. 李璨,刘庆龙,尤丽梅,林乙明,陈世品. 福建野生水生植物区系特征研究. 中国野生植物资源. 2025(03): 128-134 .
    3. 马启奥,孙楷,王宏超,李利平,李颖,李晓琳,程蒙,杨光,池秀莲. 高黎贡山区域中药材药性的组成特征及垂直格局. 中国现代中药. 2024(11): 1833-1842 .

    Other cited types(5)

Catalog

    Article views (173) PDF downloads (108) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return