Advance Search
Zhong CH,Huang WJ,Zhao TT,Zhang J,Li L,Li DW,Zhang Q,Tian H. Analysis of global Actinidia research and application progress based on domestic and international journal papers[J]. Plant Science Journal,2023,41(6):820−834. DOI: 10.11913/PSJ.2095-0837.23176
Citation: Zhong CH,Huang WJ,Zhao TT,Zhang J,Li L,Li DW,Zhang Q,Tian H. Analysis of global Actinidia research and application progress based on domestic and international journal papers[J]. Plant Science Journal,2023,41(6):820−834. DOI: 10.11913/PSJ.2095-0837.23176

Analysis of global Actinidia research and application progress based on domestic and international journal papers

Funds: This work was supported by grants from the Earmarked Fund for CARS-26 (CARS-26), and Foundation of Hubei Hongshan Laboratory.
More Information
  • Received Date: June 13, 2023
  • Revised Date: July 22, 2023
  • Based on the Web of Science core collection and the CNKI journal database of the China Knowledge Network platform, this study focused on 5 320 kiwifruit (Actinidia) research papers included in SCI and CNKI core journals from 2003 to 2022. Bibliometric analysis was used to examine the publications by year, geographic region, and subject area. Results revealed a consistent upward trend in the quantity of publications in both SCI and CNKI core journals over the past two decades. China emerged as the most prolific contributor to SCI articles, followed by New Zealand and Italy. The institutions contributing the highest number of papers included Northwest Agriculture and Forestry University, Wuhan Botanical Garden of Chinese Academy of Sciences, and Jiangxi Agricultural University. Kiwifruit research involved 131 disciplines, as such plant science, horticulture, plant pathology and entomology, fruit storage and processing, molecular biology, biochemistry, pharmacology, and bioinformatics, as well as interdisciplinary research papers. The fastest-growing disciplines over the past 5 years include molecular biology, plant pathology, and fruit storage. This bibliometric analysis serves as a resource for researchers to understand global kiwifruit research dynamics, establish research directions, and conduct academic exchange.

  • [1]
    黄宏文, 钟彩虹, 姜正旺, 李新伟, 姚小洪, 等. 猕猴桃属: 分类 资源 驯化 栽培[M]. 北京: 科学出版社, 2012: 3-330.
    [2]
    钟彩虹,黄文俊,李大卫,张琼,李黎. 世界猕猴桃产业发展及鲜果贸易动态分析[J]. 中国果树,2021(7):101−108. doi: 10.16626/j.cnki.issn1000-8047.2021.07.025

    Zhong CH,Huang WJ,Li DW,Zhang Q,Li L. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021 (7):101−108. doi: 10.16626/j.cnki.issn1000-8047.2021.07.025
    [3]
    Huang SX,Ding J,Deng DJ,Tang W,Sun HH,et al. Draft genome of the kiwifruit Actinidia chinensis[J]. Nat Commun,2013,4 (1):2640. doi: 10.1038/ncomms3640
    [4]
    Wu HL,Ma T,Kang MH,Ai FD,Zhang JL,et al. A high-quality Actinidia chinensis (kiwifruit) genome[J]. Hortic Res,2019,6 (1):117. doi: 10.1038/s41438-019-0202-y
    [5]
    Yue JY,Chen QY,Wang YZ,Zhang L,Ye C,et al. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis[J]. Hortic Res,2023,10 (2):uhac264. doi: 10.1093/hr/uhac264
    [6]
    Tang W,Sun XP,Yue JY,Tang XF,Jiao C,et al. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping[J]. GigaScience,2019,8 (4):giz027.
    [7]
    Yue JY,Liu JC,Tang W,Wu YQ,Tang XF,et al. Kiwifruit Genome Database (KGD):a comprehensive resource for kiwifruit genomics[J]. Hortic Res,2020,7 (1):117. doi: 10.1038/s41438-020-0338-9
    [8]
    Pilkington SM,Crowhurst R,Hilario E,Nardozza S,Fraser L,et al. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants[J]. BMC Genomics,2018,19 (1):257. doi: 10.1186/s12864-018-4656-3
    [9]
    Yao XH,Wang SB,Wang ZP,Li DW,Jiang Q,et al. The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha[J]. Mol Horticulture,2022,2 (1):13. doi: 10.1186/s43897-022-00034-z
    [10]
    Han X,Zhang YL,Zhang Q,Ma N,Liu XY,et al. Two haplotype-resolved,gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit[J]. Mol Plant,2023,16 (2):452−470. doi: 10.1016/j.molp.2022.12.022
    [11]
    Akagi T,Varkonyi-Gasic E,Shirasawa K,Catanach A,Henry IM,et al. Recurrent neo-sex chromosome evolution in kiwifruit[J]. Nat Plants,2023,9 (3):393−402. doi: 10.1038/s41477-023-01361-9
    [12]
    Xia H,Deng HH,Li MZ,Xie Y,Lin LJ,et al. Chromosome-scale genome assembly of a natural diploid kiwifruit (Actinidia chinensis var. deliciosa)[J]. Sci Data,2023,10 (1):92. doi: 10.1038/s41597-023-02006-4
    [13]
    Pratima P,Sharma N,Sharma DP. Canopy temperature and water relations of kiwifruit cultivar allison in response to deficit irrigation and in situ moisture conservation[J]. Curr Sci,2016,111 (2):375−379. doi: 10.18520/cs/v111/i2/375-379
    [14]
    Santoni F,Paolini J,Barboni T,Costa J. Relationships between the leaf and fruit mineral compositions of Actinidia deliciosa var. Hayward according to nitrogen and potassium fertilization[J]. Food Chem,2014,147:269−271. doi: 10.1016/j.foodchem.2013.09.154
    [15]
    Goodwin RM,McBrydie HM,Taylor MA,et al. Wind and honey bee pollination of kiwifruit (Actinidia chinensis ‘HORT16A’)[J]. New Zealand J Bot,2013,51 (3):229−240. doi: 10.1080/0028825X.2013.806934
    [16]
    Liao GL,Xu XB,Liu Q,Zhong M,Huang CH,et al. A special summer pruning method significantly increases fruit weight,ascorbic acid,and dry matter of kiwifruit (‘Jinyan’,Actinidia eriantha × A. chinensis)[J]. HortScience Horts,2020,55 (10):1698−1702. doi: 10.21273/HORTSCI15158-20
    [17]
    Akbaş H,Özcan M. Effects of fruit/leaf ratios on fruit characteristics in Kiwifruit[J]. Erwerbs-Obstbau,2020,62 (3):369−375. doi: 10.1007/s10341-020-00511-z
    [18]
    Li DW,Han F,Liu XL,Lv HY,Li LL,et al. Localized graft incompatibility in kiwifruit:analysis of homografts and heterografts with different rootstock & scion combinations[J]. Sci Hortic,2021,283:110080. doi: 10.1016/j.scienta.2021.110080
    [19]
    Suo R,Gao FF,Zhou ZX,Fu LS,Song ZZ,et al. Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking[J]. Comput Electron Agric,2021,182:106052. doi: 10.1016/j.compag.2021.106052
    [20]
    Fu LS,Feng YL,Wu JZ,Liu ZH,Gao FF,et al. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model[J]. Precision Agric,2021,22 (3):754−776. doi: 10.1007/s11119-020-09754-y
    [21]
    Barnett J,Duke M,Au CK,Lim SH. Work distribution of multiple Cartesian robot arms for kiwifruit harvesting[J]. Comput Electron Agric,2020,169:105202. doi: 10.1016/j.compag.2019.105202
    [22]
    Williams H,Ting C,Nejati M,Jones MH,Penhall N,et al. Improvements to and large-scale evaluation of a robotic kiwifruit harvester[J]. J Field Robot,2020,37 (2):187−201. doi: 10.1002/rob.21890
    [23]
    Williams HAM,Jones MH,Nejati M,Seabright MJ,Bell J,et al. Robotic kiwifruit harvesting using machine vision,convolutional neural networks,and robotic arms[J]. Biosyst Eng,2019,181:140−156. doi: 10.1016/j.biosystemseng.2019.03.007
    [24]
    Donati I,Cellini A,Sangiorgio D,Vanneste JL,Scortichini M,et al. Pseudomonas syringae pv. actinidiae:ecology,infection dynamics and disease epidemiology[J]. Microb Ecol,2020,80 (1):81−102. doi: 10.1007/s00248-019-01459-8
    [25]
    钟彩虹,李黎,潘慧,邓蕾,陈美艳. 猕猴桃细菌性溃疡病的发生规律及综合防治技术[J]. 中国果树,2020(1):9−13,18.

    Zhong CH,Li L,Pan H,Deng L,Chen MY. Occurrence rule and comprehensive control of kiwifruit bacterial canker disease[J]. China Fruits,2020 (1):9−13,18.
    [26]
    Scortichini M,Marcelletti S,Ferrante P,Petriccione M,Firrao G. Pseudomonas syringae pv. actinidiae:a re-emerging,multi-faceted,pandemic pathogen[J]. Mol Plant Pathol,2012,13 (7):631−640. doi: 10.1111/j.1364-3703.2012.00788.x
    [27]
    McCann HC,Li L,Liu YF,Li DW,Pan H,et al. Origin and evolution of the kiwifruit canker pandemic[J]. Genome Biol Evol,2017,9 (4):932−944. doi: 10.1093/gbe/evx055
    [28]
    Zhao ZB,Chen JL,Gao XN,Zhang D,Zhang JL,et al. Comparative genomics reveal pathogenicity-related loci in Pseudomonas syringae pv. actinidiae biovar 3[J]. Mol Plant Pathol,2019,20 (7):923−942. doi: 10.1111/mpp.12803
    [29]
    Gao XN,Huang QL,Zhao ZB,Han QM,Ke XW,et al. Studies on the Infection,colonization,and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labeled strain[J]. PLoS One,2016,11 (3):e0151169. doi: 10.1371/journal.pone.0151169
    [30]
    Balestra GM,Taratufolo MC,Vinatzer BA,Mazzaglia A. A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin[J]. Plant Dis,2013,97 (4):472−478. doi: 10.1094/PDIS-06-12-0590-RE
    [31]
    Cimmino A,Iannaccone M,Petriccione M,Masi M,Evidente M,et al. An ELISA method to identify the phytotoxic Pseudomonas syringae pv. actinidiae exopolysaccharides:a tool for rapid immunochemical detection of kiwifruit bacterial canker[J]. Phytochem Lett,2017,19:136−140. doi: 10.1016/j.phytol.2016.12.027
    [32]
    Zhi TH,Liu QH,Xie T,Ding Y,Hu RJ,et al. Identification of genetic and chemical factors affecting type Ⅲ secretion system expression in Pseudomonas syringae pv. actinidiae biovar 3 using a luciferase reporter construct[J]. Phytopathology,2022,112 (8):1610−1619. doi: 10.1094/PHYTO-09-21-0404-R
    [33]
    Wang FM,Mo QH,Ye KY,Gong HJ,Qi BB,et al. Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae[J]. Plant Pathol,2020,69 (6):979−989. doi: 10.1111/ppa.13184
    [34]
    Tahir J,Brendolise C,Hoyte S,Lucas M,Thomson S,et al. QTL mapping for resistance to cankers induced by Pseudomonas syringae pv. actinidiae (Psa) in a tetraploid Actinidia chinensis kiwifruit population[J]. Pathogens,2020,9 (11):967. doi: 10.3390/pathogens9110967
    [35]
    Nunes da Silva M,Vasconcelos MW,Gaspar M,Balestra GM,Mazzaglia A,Carvalho SMP. Early pathogen recognition and antioxidant system activation contributes to Actinidia arguta tolerance against Pseudomonas syringae pathovars actinidiae and actinidifoliorum[J]. Front Plant Sci,2020,11:1022. doi: 10.3389/fpls.2020.01022
    [36]
    Rheinländer PA,Sutherland PW,Elmer PAG. Visualisation of the mode of action of a biological control agent,Aureobasidium pullulans (strain YBCA5) against Pseudomonas syringae pv. actinidiae biovar 3 on the kiwifruit phylloplane[J]. Australasian Plant Pathol,2021,50 (4):379−388. doi: 10.1007/s13313-021-00783-3
    [37]
    Nie S,Al Riza DF,Ogawa Y,Suzuki T,Kuramoto M,et al. Potential of a double lighting imaging system for characterization of 'Hayward' kiwifruit harvest indices[J]. Postharvest Biol Technol,2020,162:111113. doi: 10.1016/j.postharvbio.2019.111113
    [38]
    Benelli A,Cevoli C,Fabbri A,Ragni L. Ripeness evaluation of kiwifruit by hyperspectral imaging[J]. Biosyst Eng,2022,223:42−52. doi: 10.1016/j.biosystemseng.2021.08.009
    [39]
    Berardinelli A,Benelli A,Tartagni M,Ragni L. Kiwifruit flesh firmness determination by a NIR sensitive device and image multivariate data analyses[J]. Sens Actuator A Phys,2019,296:265−271. doi: 10.1016/j.sna.2019.07.027
    [40]
    Santagapita PR,Tylewicz U,Panarese V,Rocculi P,Dalla Rosa M. Non-destructive assessment of kiwifruit physico-chemical parameters to optimise the osmotic dehydration process:a study on FT-NIR spectroscopy[J]. Biosyst Eng,2016,142:101−109. doi: 10.1016/j.biosystemseng.2015.12.011
    [41]
    McGlone VA,Jordan RB,Seelye R,Martinsen PJ. Comparing density and NIR methods for measurement of kiwifruit dry matter and soluble solids content[J]. Postharvest Biol Technol,2002,26 (2):191−198. doi: 10.1016/S0925-5214(02)00014-5
    [42]
    Ma T,Xia Y,Inagaki T,Tsuchikawa S. Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach[J]. Postharvest Biol Technol,2021,174:111440. doi: 10.1016/j.postharvbio.2020.111440
    [43]
    Wang Z,Künnemeyer R,McGlone A,Sun J,Burdon J. Comparison of a dual-laser and a Vis-NIR spectroscopy system for detection of chilling injury in kiwifruit[J]. Postharvest Biol Technol,2021,175:111418. doi: 10.1016/j.postharvbio.2020.111418
    [44]
    Lü Q,Tang MJ. Detection of hidden bruise on kiwi fruit using hyperspectral imaging and parallelepiped classification[J]. Procedia Environ Sci,2012,12:1172−1179. doi: 10.1016/j.proenv.2012.01.404
    [45]
    Torkashvand AM,Ahmadi A,Gómez PA,Maghoumi M. Using artificial neural network in determining postharvest LIFE of kiwifruit[J]. J Sci Food Agric,2019,99 (13):5918−5925. doi: 10.1002/jsfa.9866
    [46]
    Ye LX,Tan B,Niu YX,Wang Y,Wang D,Luo AW. The nondestructive testing of Hayward kiwifruit quality treated with CPPU based on the electrical characteristics[J]. J Food Meas Charact,2023,17 (3):3005−3018. doi: 10.1007/s11694-023-01842-7
    [47]
    Xu LJ,Chen YJ,Wang XH,Chen H,Tang ZL,et al. Non-destructive detection of kiwifruit soluble solid content based on hyperspectral and fluorescence spectral imaging[J]. Front Plant Sci,2022,13:1075929.
    [48]
    Cobus LA,van Wijk K. Non-contact acoustic method to measure depth-dependent elastic properties of a kiwifruit[J]. Wave Motion,2023,119:103126. doi: 10.1016/j.wavemoti.2023.103126
    [49]
    Song SJ,Huang X,Li YC. Vibrational bruise prediction of harvested kiwifruits under transportation based on the BP neural network[J]. J Internet Technol,2022,23 (2):391−396. doi: 10.53106/160792642022032302017
    [50]
    Yang YY,Peng JZ,Fan PH. A non-destructive dropped fruit impact signal imaging-based deep learning approach for smart sorting of kiwifruit[J]. Comput Electron Agric,2022,202:107380. doi: 10.1016/j.compag.2022.107380
    [51]
    Lin XC,Yang R,Dou Y,Zhang W,Du HY,et al. Transcriptome analysis reveals delaying of the ripening and cell‐wall degradation of kiwifruit by hydrogen sulfide[J]. J Sci Food Agric,2020,100 (5):2280−2287. doi: 10.1002/jsfa.10260
    [52]
    Zheng XL,Hu B,Song LJ,Pan J,Liu MM. Changes in quality and defense resistance of kiwifruit in response to nitric oxide treatment during storage at room temperature[J]. Sci Hortic,2017,222:187−192. doi: 10.1016/j.scienta.2017.05.010
    [53]
    Jiao JQ,Jin MJ,Liu H,Suo JT,Yin XR,et al. Application of melatonin in kiwifruit (Actinidia chinensis) alleviated chilling injury during cold storage[J]. Sci Hortic,2022,296:110876. doi: 10.1016/j.scienta.2022.110876
    [54]
    Huan C,Du XJ,Wang LF,Kebbeh M,Li HH,et al. Transcriptome analysis reveals the metabolisms of starch degradation and ethanol fermentation involved in alcoholic off-flavour development in kiwifruit during ambient storage[J]. Postharvest Biol Technol,2021,180:111621. doi: 10.1016/j.postharvbio.2021.111621
    [55]
    Chen Y,Shu P,Wang RC,Du XF,Xie Y,et al. Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit[J]. Plant Sci,2021,313:111063. doi: 10.1016/j.plantsci.2021.111063
    [56]
    Li BQ,Xia YX,Wang YY,Qin GZ,Tian SP. Characterization of genes encoding key enzymes involved in anthocyanin metabolism of kiwifruit during storage period[J]. Front Plant Sci,2017,8:341.
    [57]
    Chen YJ,Feng XP,Ren H,Yang HK,Liu Y,et al. Changes in physicochemical properties and volatiles of kiwifruit pulp beverage treated with high hydrostatic pressure[J]. Foods,2020,9 (4):485. doi: 10.3390/foods9040485
    [58]
    Xu SJ,He WY,Yan JT,Zhang RG,Wang P,et al. Volatomics-assisted characterization of aroma and off-flavor contributors in fresh and thermally treated kiwifruit juice[J]. Food Res Int,2023,167:112656. doi: 10.1016/j.foodres.2023.112656
    [59]
    Huang JT,Li HC,Wang YQ,Wang XN,Ren YC,et al. Evaluation of the quality of fermented kiwi wines made from different kiwifruit cultivars[J]. Food Biosci,2021,42:101051. doi: 10.1016/j.fbio.2021.101051
    [60]
    Cairone F,Garzoli S,Menghini L,Simonetti G,Casadei MA,et al. Valorization of kiwi peels:fractionation,bioactives analyses and hypotheses on complete peels recycle[J]. Foods,2022,11 (4):589. doi: 10.3390/foods11040589
    [61]
    Zhuang ZQ,Chen M,Niu JH,Qu N,Ji B,et al. The manufacturing process of kiwifruit fruit powder with high dietary fiber and its laxative effect[J]. Molecules,2019,24 (21):3813. doi: 10.3390/molecules24213813
    [62]
    李斌,张继月,耿丽娟,吕庆红,辛广,等. 软枣猕猴桃在体外模拟消化过程中酚类物质及抗氧化活性的变化规律[J]. 食品科学,2021,42(23):196−205.

    Li B,Zhang JY,Geng LJ,Lü QH,Xin G,et al. Changes of phenolics and antioxidant activities of kiwiberry (Actinidia arguta) fruit during in vitro simulated digestion[J]. Food Science,2021,42 (23):196−205.
    [63]
    高帆,谢玥,沈妍秋,雷芝,王秀,等. 外源褪黑素对氯化钠胁迫下美味猕猴桃实生苗抗氧化物酶和渗透调节物质的影响[J]. 浙江农林大学学报,2018,35(2):291−297.

    Gao F,Xie Y,Shen YQ,Lei Z,Wang X,et al. Exogenous melatonin for NaCl stress with antioxidant enzymes and osmotic substances of Aclinidia deliciosa seedlings[J]. Journal of Zhejiang A&F University,2018,35 (2):291−297.
    [64]
    王岸娜,李岚昕,吴立根,崔文慧,丁璇子,郑思迪. 猕猴桃糖蛋白体外抗氧化研究[J]. 食品工业,2017,38(10):161−164.

    Wang AN,Li LX,Wu LG,Cui WH,Ding XZ,Zheng SD. Study on antioxidant activity of kiwifruit glycoprotein in vitro[J]. The Food Industry,2017,38 (10):161−164.
    [65]
    纪旭光. 软枣猕猴桃果实多糖的提取纯化、抗氧化及转录组测序研究[D]. 佳木斯: 佳木斯大学, 2022: 1-57.
    [66]
    Taghinezhad E,Kaveh M,Szumny A. Thermodynamic and quality performance studies for drying kiwi in hybrid hot air-infrared drying with ultrasound pretreatment[J]. Appl Sci,2021,11 (3):1297. doi: 10.3390/app11031297
    [67]
    Ramazzina I,Berardinelli A,Rizzi F,Tappi S,Ragni L,et al. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit[J]. Postharvest Biol Technol,2015,107:55−65. doi: 10.1016/j.postharvbio.2015.04.008
    [68]
    Zhao Y,Wang P,Zhan P,Tian HL,Lu C,Tian P. Aroma characteristics of cloudy kiwifruit juices treated with high hydrostatic pressure and representative thermal processes[J]. Food Res Int,2021,139:109841. doi: 10.1016/j.foodres.2020.109841
    [69]
    Silva AM,Pinto D,Moreira MM,Costa PC,Delerue-Matos C,Rodrigues F. Valorization of Kiwiberry leaves recovered by ultrasound-assisted extraction for skin application:a response surface methodology approach[J]. Antioxidants (Basel),2022,11 (4):763. doi: 10.3390/antiox11040763
    [70]
    Peng YY,Cordiner SB,Sawyer GM,McGhie TK,Espley RV,et al. Kiwifruit with high anthocyanin content modulates NF-κB activation and reduces CCL11 secretion in human alveolar epithelial cells[J]. J Funct Foods,2020,65:103734. doi: 10.1016/j.jff.2019.103734
    [71]
    D'Amelio CM,Bernad A,García-Figueroa BE,Garrido-Fernández S,Azofra J,et al. Unraveling the diagnosis of kiwifruit allergy:usefulness of current diagnostic tests[J]. J Investig Allergol Clin Immunol,2022,32 (3):206−212. doi: 10.18176/jiaci.0691
    [72]
    Sopo SM,Fantacci C,Sani I. Contact urticaria on eczematous skin by kiwifruit allergy. In vivo component-resolved diagnosis[J]. Allergol Immunopathol (Madr),2015,43 (5):474−476. doi: 10.1016/j.aller.2014.07.006
    [73]
    Yoo SK,Kang JY,Lee U,Park SK,Kim JM,et al. Improving effect of Actinidia arguta leaf on hyperglycemia-induced cognitive dysfunction[J]. J Funct Foods,2021,76:104315. doi: 10.1016/j.jff.2020.104315
    [74]
    Chan AOO,Leung G,Tong T,Wong NY. Increasing dietary fiber intake in terms of kiwifruit improves constipation in Chinese patients[J]. World J Gastroenterol,2007,13 (35):4771−4775. doi: 10.3748/wjg.v13.i35.4771
    [75]
    李加兴,陈双平,李伟,王小勇,任展,李敏利. 几种主要产地猕猴桃的果籽营养成分比较[J]. 食品与机械,2007,23(2):86−87.

    Li JX,Chen SP,Li W,Wang XY,Ren Z,Li ML. Comparision of with kiwi fruit seed's nutrition ingredient in several kind of main habitat[J]. Food & Machinery,2007,23 (2):86−87.
  • Related Articles

    [1]Chen Boshen, Miao Lingfeng, Yang Fan. Effects of waterlogging and salinity stresses on eco-physiology and accumulation of Na+, K+, and Cl in two waterlogging-tolerant arbor species[J]. Plant Science Journal, 2024, 42(3): 377-386. DOI: 10.11913/PSJ.2095-0837.23264
    [2]Xu Ji-Lei, Wang Xing-Zhong, Fan Ji-Biao. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Science Journal, 2022, 40(6): 829-838. DOI: 10.11913/PSJ.2095-0837.2022.60829
    [3]Li Guang-Lu, Wang Wen-Guo, Chen Zhi-Xin, Hu Zeng-Hui, Leng Ping-Sheng. Effect of calcium on ion contents in different organs and absorption of K+ and Na+ in the root tips of Mesembryanthemum crystallinum L. under NaCl stress[J]. Plant Science Journal, 2018, 36(2): 282-290. DOI: 10.11913/PSJ.2095-0837.2018.20282
    [4]YANG Zhong-Min, WANG Yan. Cloning of Potassium Transporter Gene (HcKUP12) from Halostachys caspica and Its Expression Profile under Salt Stress[J]. Plant Science Journal, 2015, 33(4): 499-506. DOI: 10.11913/PSJ.2095-0837.2015.40499
    [5]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong, WEI Yue, HU De-Long, WANG Quan-Zhi. Effects of Exogenous Proline on the Ascorbate-Glutathione Cycle in Roots of Cucumis melo Seedlings under Salt Stress[J]. Plant Science Journal, 2014, 32(5): 502-508. DOI: 10.11913/PSJ.2095-0837.2014.50502
    [6]WANG Yan, CHEN Xi, YANG Zhong-Min, LIU Deng-Hui. Cloning of Pathogen-Related Protein Gene(SfPR-1) from Salsola ferganica and Its Expression Analysis under Salt Stress[J]. Plant Science Journal, 2013, 31(2): 164-170. DOI: 10.3724/SP.J.1142.2013.20164
    [7]CHEN Tao, WANG Gui-Mei, SHEN Wei-Wei, LI Xiao-Zhen, QI Jian-Min, XU Jian-Tang, TAO Ai-Fen, LIU Xiao-Qian. Effect of Salt Stress on the Growth and Antioxidant Enzyme Activity of Kenaf Seedlings[J]. Plant Science Journal, 2011, 1(4): 493-501.
    [8]LI Bin, GUO Shi-Rong, SUN Jin, LI Juan. Effects of Exogenous Spermidine on Free Polyamine Content and Polyamine Biosynthesis Gene Expression in Cucumber Seedlings under Salt Stress[J]. Plant Science Journal, 2011, 1(4): 480-485.
    [9]YAN Zhi-Ming, SUN Jin, GUO Shi-Rong. Effects of Exogenous Proline on Nitrate Reduction in Melon Seedlings under Salt Stress[J]. Plant Science Journal, 2011, 29(1): 118-123.
    [10]ZHANG Run-Hua, GUO Shi-Rong, FAN Huai-Fu. Effects of Exogenous Spd on NO3--N,NH4+-N Contents and Nitrate Reductase Activity of Salt Stressed Leaves and Roots of Cucumber Seedlings[J]. Plant Science Journal, 2006, 24(4): 381-384.
  • Cited by

    Periodical cited type(1)

    1. 周静静,苗灵凤,李大东,田梦洁,杨帆. 旱-盐复合胁迫对降香黄檀幼苗生长和生理生化特性的影响. 热带亚热带植物学报. 2025(02): 197-206 .

    Other cited types(0)

Catalog

    Article views (430) PDF downloads (124) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return