Citation: | Ding WN,Xing YW. Evolutionary history of alpine plant diversity in the Pan-Tibetan Highlands[J]. Plant Science Journal,2023,41(6):729−740. DOI: 10.11913/PSJ.2095-0837.23201 |
The Pan-Tibetan Highlands are a temperate biodiversity hotspot, hosting the world’s most species-rich alpine flora. Extensive phylogeographic, biogeographic, and evolutionary studies have deepened our understanding of the evolution and underlying mechanisms of biodiversity in this region. Furthermore, recent advancements in our understanding of the geological history of this region have paved the way for interdisciplinary studies integrating geological, climatic, and biological processes to elucidate regional biodiversity. In this context, we incorporate the latest geological insights into the Pan-Tibetan Highlands, distinguishing the Tibetan Plateau, the Himalaya, and the Hengduan Mountains. We review the origin and evolutionary history of alpine plant diversity in the Tibetan-Himalayan-Hengduan region, as well as the underlying abiotic and biotic drivers that may influence diversification and reproductive isolation. Finally, we propose further exploration of the evolutionary histories and biotic interchanges between different mountain ranges at intercontinental or global scales, as well as investigations into the genetic mechanisms underlying adaptive strategies in alpine plants.
[1] |
Rahbek C,Borregaard MK,Colwell RK,Dalsgaard B,Holt BG,et al. Humboldt’s enigma:what causes global patterns of mountain biodiversity?[J]. Science,2019,365 (6458):1108−1113. doi: 10.1126/science.aax0149
|
[2] |
Rahbek C,Borregaard MK,Antonelli A,Colwell RK,Holt BG,et al. Building mountain biodiversity:geological and evolutionary processes[J]. Science,2019,365 (6458):1114−1119. doi: 10.1126/science.aax0151
|
[3] |
Körner C. The alpine life zone[M]//Körner C, ed. Alpine Plant Life. 3rd ed. Cham: Springer, 2021: 23-51.
|
[4] |
Lamprecht A,Semenchuk PR,Steinbauer K,Winkler M,Pauli H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps[J]. New Phytol,2018,220 (2):447−459. doi: 10.1111/nph.15290
|
[5] |
Rumpf SB,Hülber K,Klonner G,Moser D,Schütz M,et al. Range dynamics of mountain plants decrease with elevation[J]. Proc Natl Acad Sci USA,2018,115 (8):1848−1853. doi: 10.1073/pnas.1713936115
|
[6] |
Madriñán S,Cortés AJ,Richardson JE. Páramo is the world's fastest evolving and coolest biodiversity hotspot[J]. Front Genet,2013,4:192.
|
[7] |
Heenan PB,Mcglone MS. Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic[J]. NZJ Ecol,2013,37 (1):105−113.
|
[8] |
Winkworth RC,Wagstaff SJ,Glenny D,Lockhart PJ. Evolution of the New Zealand mountain flora:origins,diversification and dispersal[J]. Org Divers Evol,2005,5 (3):237−247. doi: 10.1016/j.ode.2004.12.001
|
[9] |
Kandziora M,Gehrke B,Popp M,Gizaw A,Brochmann C,Pirie MD. The enigmatic tropical alpine flora on the African sky islands is young,disturbed,and unsaturated[J]. Proc Natl Acad Sci USA,2022,119 (22):e2112737119. doi: 10.1073/pnas.2112737119
|
[10] |
邓涛,吴飞翔,苏涛,周浙昆. 青藏高原——现代生物多样性形成的演化枢纽[J]. 中国科学:地球科学,2020,63(2):172−187. doi: 10.1007/s11430-019-9507-5
Deng T,Wu FX,Su T,Zhou ZK. Tibetan Plateau:an evolutionary junction for the history of modern biodiversity[J]. Science China Earth Sciences,2020,63 (2):172−187. doi: 10.1007/s11430-019-9507-5
|
[11] |
周浙昆,邓涛. 青藏高原是研究生物演化和环境演变的天然实验室[J]. 中国科学:地球科学,2020,63(2):169−171. doi: 10.1007/s11430-019-9563-x
Zhou ZK,Deng T. The Tibetan Plateau is a natural laboratory for studying organic evolution and environmental change[J]. Science China Earth Sciences,2020,63 (2):169−171. doi: 10.1007/s11430-019-9563-x
|
[12] |
Jacques FMB,Guo SX,Su T,Xing YW,Huang YJ,et al. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China:a case study of the Lincang flora from Yunnan Province[J]. Palaeogeogr Palaeoclimatol Palaeoecol,2011,304 (3-4):318−327. doi: 10.1016/j.palaeo.2010.04.014
|
[13] |
Xing YW,Utescher T,Jacques FMB,Su T,Liu YS,et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene:evidence from plant macrofossils[J]. Palaeogeogr Palaeoclimatol Palaeoecol,2012,358-360:19−26. doi: 10.1016/j.palaeo.2012.07.011
|
[14] |
Su T,Liu YS,Jacques FMB,Huang YJ,Xing YW,et al. The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China[J]. Quatern Res,2013,80 (2):316−325. doi: 10.1016/j.yqres.2013.07.001
|
[15] |
Boschman LM,Condamine FL. Mountain radiations are not only rapid and recent:ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations[J]. Glob Planet Change,2022,208:103704. doi: 10.1016/j.gloplacha.2021.103704
|
[16] |
Olson DM,Dinerstein E,Wikramanayake ED,Burgess ND,Powell GVN,et al. Terrestrial ecoregions of the world:a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity[J]. BioScience,2001,51 (11):933−938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
|
[17] |
刘晓惠,许强,丁林. 差异抬升:青藏高原新生代古高度变化历史[J]. 中国科学:地球科学,2016,59(11):2105−2120. doi: 10.1007/s11430-015-5486-y
Liu XH,Xu Q,Ding L. Differential surface uplift:cenozoic paleoelevation history of the Tibetan Plateau[J]. Science China Earth Sciences,2016,59 (11):2105−2120. doi: 10.1007/s11430-015-5486-y
|
[18] |
Spicer RA,Su T,Valdes PJ,Farnsworth A,Wu FX,et al. Why the‘uplift of the Tibetan Plateau’ is a myth?[J]. Natl Sci Rev,2020,8 (1):nwaa091.
|
[19] |
丁林,李震宇,宋培平. 青藏高原的核心来自南半球冈瓦纳大陆[J]. 中国科学院院刊,2017,32(9):945−950. doi: 10.16418/j.issn.1000-3045.2017.09.003
Ding L,Li ZY,Song PP. Core fragments of tibetan plateau from gondwanaland united in northern hemisphere[J]. Bulletin of Chinese Academy of Sciences,2017,32 (9):945−950. doi: 10.16418/j.issn.1000-3045.2017.09.003
|
[20] |
Ding L,Xu Q,Yue YH,Wang HQ,Cai FL,Li S. The andean-type gangdese mountains:paleoelevation record from the paleocene-eocene Linzhou Basin[J]. Earth Planet Sci Lett,2014,392:250−264. doi: 10.1016/j.jpgl.2014.01.045
|
[21] |
丁林,Maksatbek S,蔡福龙,王厚起,宋培平,等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学:地球科学,2017,60(4):635−651. doi: 10.1007/s11430-016-5244-x
Ding L,Maksatbek S,Cai FL,Wang HQ,Song PP,et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth Sciences,2017,60 (4):635−651. doi: 10.1007/s11430-016-5244-x
|
[22] |
Fang XM,Dupont-Nivet G,Wang CS,Song CH,Meng QQ,et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Sci Adv,2020,6 (50):eaba7298. doi: 10.1126/sciadv.aba7298
|
[23] |
Ding L,Spicer RA,Yang J,Xu Q,Cai FL,et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology,2017,45 (3):215−218. doi: 10.1130/G38583.1
|
[24] |
Favre A,Päckert M,Pauls SU,Jähnig SC,Uhl D,et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas[J]. Biol Rev,2015,90 (1):236−253. doi: 10.1111/brv.12107
|
[25] |
Su T,Spicer RA,Li SH,Xu H,Huang J,et al. Uplift,climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet[J]. Natl Sci Rev,2019,6 (3):495−504. doi: 10.1093/nsr/nwy062
|
[26] |
Liu J,Milne RI,Zhu GF,Spicer RA,Wambulwa MC,et al. Name and scale matter:clarifying the geography of Tibetan Plateau and adjacent mountain regions[J]. Glob Planet Change,2022,215:103893. doi: 10.1016/j.gloplacha.2022.103893
|
[27] |
Ding WN,Ree RH,Spicer RA,Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora[J]. Science,2020,369 (6503):578−581. doi: 10.1126/science.abb4484
|
[28] |
王成善,戴紧根,刘志飞,朱利东,李亚林,贾国东. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘,2009,16(3):1−30. doi: 10.3321/j.issn:1005-2321.2009.03.001
Wang CS,Dai JG,Liu ZF,Zhu LD,Li YL,Jia GD. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques:a review[J]. Earth Science Frontiers,2009,16 (3):1−30. doi: 10.3321/j.issn:1005-2321.2009.03.001
|
[29] |
孙继敏,刘卫国,柳中晖,付碧宏. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊,2017,32(9):951−958. doi: 10.16418/j.issn.1000-3045.2017.09.004
Sun JM,Liu WG,Liu ZH,Fu BH. Effects of the uplift of the Tibetan Plateau and retreat of neotethys ocean on the stepwise aridification of Mid-Latitude Asian interior[J]. Bulletin of Chinese Academy of Sciences,2017,32 (9):951−958. doi: 10.16418/j.issn.1000-3045.2017.09.004
|
[30] |
武素功,杨永平,费勇. 青藏高原高寒地区种子植物区系的研究[J]. 云南植物研究,1995,17(3):233−250.
Wu SG,Yang YP,Fei Y. On the flora of the alpine region in the Qinghai-Xizang (Tibet) Plateau[J]. Acta Botanica Yunnanica,1995,17 (3):233−250.
|
[31] |
邓敏,周浙昆. 滇西北高山流石滩植物多样性[J]. 云南植物研究,2004,26(1):23−34.
Deng M,Zhou ZK. Seed plant diversity on screes from Northwest Yunnan[J]. Acta Botanica Yunnanica,2004,26 (1):23−34.
|
[32] |
李炳元. 横断山脉范围探讨[J]. 山地研究,1987,5(2):74−82.
Li BY. On the boundaries of the Hengduan Mountains[J]. Mountain Research,1987,5 (2):74−82.
|
[33] |
钟祥浩,张文敬,罗辑. 贡嘎山地区山地生态系统与环境特征[J]. AMBIO-人类环境杂志,1999,28(8):648−654.
Zhong XH,Zhang WJ,Luo J. The characteristics of the mountain ecosystem and environment in the Gongga mountain region[J]. AMBIO-A Journal of the Hunman Environment,1999,28 (8):648−654.
|
[34] |
Boufford DE. Biodiversity hotspot:China's Hengduan Mountains[J]. Arnoldia,2014,72 (1):24−35.
|
[35] |
中国科学院青藏高原综合科学考察队. 横断山区土壤[M]. 北京: 气象出版社, 2000: 1-11.
|
[36] |
李文华, 张谊光. 横断山区的垂直气候及其对森林分布的影响[M]. 北京: 气象出版社, 2010: 1-17.
|
[37] |
李恒,武素功. 西藏植物区系区划和喜马拉雅南部植物地区的区系特征[J]. 地理学报,1983,38(3):252−261. doi: 10.3321/j.issn:0375-5444.1983.03.005
Li H,Wu SG. The regionalization of Xizang (Tibet) flora and the floristic structure of south Himalaya region[J]. Acta Geographica Sinica,1983,38 (3):252−261. doi: 10.3321/j.issn:0375-5444.1983.03.005
|
[38] |
Tiwari A,Uprety Y,Rana SK. Plant endemism in the Nepal Himalayas and phytogeographical implications[J]. Plant Divers,2019,41 (3):174−182. doi: 10.1016/j.pld.2019.04.004
|
[39] |
张大才,孙航. 横断山区树线以上区域种子植物的标本分布与物种丰富度[J]. 生物多样性,2008,16(4):381−388. doi: 10.3321/j.issn:1005-0094.2008.04.009
Zhang DC,Sun H. Distribution of specimens and species richness of seed plants above timber line in the Hengduan Mountains,southwest China[J]. Biodiversity Science,2008,16 (4):381−388. doi: 10.3321/j.issn:1005-0094.2008.04.009
|
[40] |
Li XH,Zhu XX,Niu Y,Sun H. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region,southwest China[J]. J Syst Evol,2014,52 (3):280−288. doi: 10.1111/jse.12027
|
[41] |
Yu HB,Miao SY,Xie GW,Guo XY,Chen Z,Favre A. Contrasting floristic diversity of the Hengduan Mountains,the Himalayas and the Qinghai-Tibet Plateau sensu stricto in China[J]. Front Ecol Evol,2020,8:136. doi: 10.3389/fevo.2020.00136
|
[42] |
Ohba H. The alpine flora of the Nepal Himalayas: an introductory note[M]//Ohba H, Malla SH, eds. The Himalayan Plants. Tokyo: Tokyo University Press, 1988: 19-46.
|
[43] |
Stainton A, Polunin O. Flowers of the Himalaya[M]. Oxford: Oxford University Press, 1988: 1-100.
|
[44] |
Flantua SGA,O'dea A,Onstein RE,Giraldo C,Hooghiemstra H. Diversity and geographical pattern of altitudinal belts in the Hengduan Mountains in China[J]. J Mt Sci,2010,7 (2):123−132. doi: 10.1007/s11629-010-1011-9
|
[45] |
Flantua SGA,O'dea A,Onstein RE,Giraldo C,Hooghiemstra H. The flickering connectivity system of the north Andean páramos[J]. J Biogeogr,2019,46 (8):1808−1825. doi: 10.1111/jbi.13607
|
[46] |
Gehrke B,Linder HP. Species richness,endemism and species composition in the tropical Afroalpine flora[J]. Alp Bot,2014,124 (2):165−177. doi: 10.1007/s00035-014-0132-0
|
[47] |
Luo D,Yue JP,Sun WG,Xu B,Li ZM,et al. Evolutionary history of the subnival flora of the Himalaya-Hengduan Mountains:first insights from comparative phylogeography of four perennial herbs[J]. J Biogeogr,2016,43 (1):31−43. doi: 10.1111/jbi.12610
|
[48] |
Liu JQ,Gao TG,Chen ZD,Lu AM. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae)[J]. Mol Phylogenet Evol,2002,23 (3):307−325. doi: 10.1016/S1055-7903(02)00039-8
|
[49] |
Wang YJ,Liu JQ,Miehe G. Phylogenetic origins of the himalayan endemic Dolomiaea,Diplazoptilon and Xanthopappus (Asteraceae:Cardueae) based on three DNA regions[J]. Ann Bot,2007,99 (2):311−322. doi: 10.1093/aob/mcl259
|
[50] |
Zhang JW,Nie ZL,Wen J,Sun H. Molecular phylogeny and biogeography of three closely related genera,Soroseris,Stebbinsia,and Syncalathium (Asteraceae,Cichorieae),endemic to the Tibetan Plateau,SW China[J]. Taxon,2011,60 (1):15−26. doi: 10.1002/tax.601003
|
[51] |
Xu B,Luo D,Li ZM,Sun H. Evolutionary radiations of cushion plants on the Qinghai-Tibet Plateau:insights from molecular phylogenetic analysis of two subgenera of Arenaria and Thylacospermum (Caryophyllaceae)[J]. Taxon,2019,68 (5):1003−1020. doi: 10.1002/tax.12127
|
[52] |
Ye XY,Ma PF,Yang GQ,Guo C,Zhang YX,et al. Rapid diversification of alpine bamboos associated with the uplift of the Hengduan Mountains[J]. J Biogeogr,2019,46 (12):2678−2689. doi: 10.1111/jbi.13723
|
[53] |
Liu JQ,Wang YJ,Wang AL,Hideaki O,Abbott RJ. Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau[J]. Mol Phylogenet Evol,2006,38 (1):31−49. doi: 10.1016/j.ympev.2005.09.010
|
[54] |
Xu LS,Herrando-Moraira S,Susanna A,Galbany-Casals M,Chen YS. Phylogeny,origin and dispersal of Saussurea (Asteraceae) based on chloroplast genome data[J]. Mol Phylogenet Evol,2019,141:106613. doi: 10.1016/j.ympev.2019.106613
|
[55] |
Zhang ML,Fritsch PW. Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification[J]. Plant Syst Evol,2010,288 (3-4):191−199. doi: 10.1007/s00606-010-0324-z
|
[56] |
Xie HY,Ash JE,Linde CC,Cunningham S,Nicotra A. Himalayan-Tibetan plateau uplift drives divergence of polyploid poppies:Meconopsis viguier (Papaveraceae)[J]. PLoS One,2014,9 (6):e99177. doi: 10.1371/journal.pone.0099177
|
[57] |
Sun YS,Wang AL,Wan DS,Wang Q,Liu JQ. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits[J]. Mol Phylogenet Evol,2012,63 (1):150−158. doi: 10.1016/j.ympev.2012.01.002
|
[58] |
Zhang JQ,Meng SY,Allen GA,Wen J,Rao GY. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae)[J]. Mol Phylogenet Evol,2014,77:147−158. doi: 10.1016/j.ympev.2014.04.013
|
[59] |
Ebersbach J,Muellner-Riehl AN,Michalak I,Tkach N,Hoffmann MH,et al. In and out of the Qinghai-Tibet Plateau:divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L.[J]. J Biogeogr,2017,44 (4):900−910. doi: 10.1111/jbi.12899
|
[60] |
Favre A,Michalak I,Chen CH,Wang JC,Pringle JS,et al. Out-of-Tibet:the spatio-temporal evolution of Gentiana (Gentianaceae)[J]. J Biogeogr,2016,43 (10):1967−1978. doi: 10.1111/jbi.12840
|
[61] |
Zhao JL,Xia YM,Cannon CH,Kress WJ,Li QJ. Evolutionary diversification of alpine ginger reflects the early uplift of the Himalayan-Tibetan Plateau and rapid extrusion of Indochina[J]. Gondwana Res,2016,32:232−241. doi: 10.1016/j.gr.2015.02.004
|
[62] |
李锡文,李捷. 横断山脉地区种子植物区系的初步研究[J]. 云南植物研究,1993,15(3):217−231.
Li XW,Li J. A preliminary floristic study on the seed plants from the region of Hengduan Mountain[J]. Acta Botanica Yunnanica,1993,15 (3):217−231.
|
[63] |
Hörandl E,Emadzade K. The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae):a global comparison[J]. Taxon,2011,60 (2):415−426. doi: 10.1002/tax.602011
|
[64] |
Hansen J,Sato M,Russell G,Kharecha P. Climate sensitivity,sea level and atmospheric carbon dioxide[J]. Philos Trans Roy Soc A Math Phys Eng Sci,2013,371 (2001):20120294.
|
[65] |
Zachos JC,Dickens GR,Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature,2008,451 (7176):279−283. doi: 10.1038/nature06588
|
[66] |
Farnsworth A,Lunt DJ,Robinson SA,Valdes PJ,Roberts WHG,et al. Past East Asian monsoon evolution controlled by paleogeography,not CO2[J]. Sci Adv,2019,5 (10):eaax1697. doi: 10.1126/sciadv.aax1697
|
[67] |
Hazzi NA,Moreno JS,Ortiz-Movliav C,Palacio RD. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes[J]. Proc Natl Acad Sci USA,2018,115 (31):7985−7990. doi: 10.1073/pnas.1803908115
|
[68] |
Assefa A,Ehrich D,Taberlet P,Nemomissa S,Brochmann C. Pleistocene colonization of afro-alpine ‘sky islands’ by the arctic-alpine Arabis alpina[J]. Heredity,2007,99 (2):133−142. doi: 10.1038/sj.hdy.6800974
|
[69] |
Muellner-Riehl AN. Mountains as evolutionary arenas:patterns,emerging approaches,paradigm shifts,and their implications for plant phylogeographic research in the Tibeto-Himalayan region[J]. Front Plant Sci,2019,10:195. doi: 10.3389/fpls.2019.00195
|
[70] |
Sun H,Li ZM,Landis JB,Qian LS,Zhang TC,Deng T. Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya[J]. Alp Bot,2022,132 (1):141−151. doi: 10.1007/s00035-021-00269-4
|
[71] |
Chen JH,Huang Y,Brachi B,Yun QZ,Zhang W,et al. Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot[J]. Nat Commun,2019,10 (1):5230. doi: 10.1038/s41467-019-13128-y
|
[72] |
Liu JQ,Duan YW,Hao G,Ge XJ,Sun H. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau[J]. J Syst Evol,2014,52 (3):241−249. doi: 10.1111/jse.12094
|
[73] |
Wu SD,Wang Y,Wang ZF,Shrestha N,Liu JQ. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau[J]. New Phytol,2022,234 (2):392−404. doi: 10.1111/nph.17956
|
[74] |
Ma YZ,Mao XX,Wang J,Zhang L,Jiang YZ,et al. Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China[J]. Natl Sci Rev,2022,9 (12):nwac276. doi: 10.1093/nsr/nwac276
|
[75] |
Fu PC,Twyford AD,Sun SS,Wang HY,Xia MZ,et al. Recurrent hybridization underlies the evolution of novelty in Gentiana (Gentianaceae) in the Qinghai-Tibetan Plateau[J]. AoB Plants,2021,13 (1):plaa068. doi: 10.1093/aobpla/plaa068
|
[76] |
Han TS,Hu ZY,Du ZQ,Zheng QJ,Liu J,et al. Adaptive responses drive the success of polyploid yellowcresses (Rorippa,Brassicaceae) in the Hengduan Mountains,a temperate biodiversity hotspot[J]. Plant Divers,2022,44 (5):455−467. doi: 10.1016/j.pld.2022.02.002
|
[77] |
Xu B,Li ZM,Sun H. Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains,SW China[J]. J Syst Evol,2014,52 (3):271−279. doi: 10.1111/jse.12037
|
[1] | Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282 |
[2] | Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140 |
[3] | Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152 |
[4] | Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503 |
[5] | ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487 |
[6] | CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394 |
[7] | SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346. |
[8] | CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353 |
[9] | He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588. |
[10] | CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266. |