Advance Search
Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255
Citation: Hu JN,Yu ZM,Zhang XY,Zhang P,Yang PF. Studies on flower pigmentation in Nelumbo nucifera Gaertn.[J]. Plant Science Journal,2023,41(6):800−808. DOI: 10.11913/PSJ.2095-0837.23255

Studies on flower pigmentation in Nelumbo nucifera Gaertn.

Funds: This work was supported by a grant from the Wuhan Municipal Landscape Gardens and Forestry Bureau (2022-16)
More Information
  • Received Date: September 01, 2023
  • Revised Date: September 19, 2023
  • The lotus (Nelumbo nucifera Gaertn.) ranks among the 10 most eminent flowers in China, with its ornamental value primarily attributed to the color diversity of its petals. In general, color formation in plants is largely influenced by anthocyanins. However, few studies have been conducted on the lotus and the molecular mechanisms underlying petal color formation remain incompletely understood. This review focuses on studies related to lotus petal coloration, summarizing advances in our understanding of the pigment constituents, as well as structural and regulatory genes involved in the anthocyanin biosynthesis pathway. The primary objective of this review is to provide a reference for further study of the mechanisms governing lotus color formation and propose directions for future lotus breeding.

  • [1]
    The Angiosperm Phylogeny Group,Chase MW,Christenhusz MJM,Fay MF,Byng JW,et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅳ[J]. Botan J Linn Soc,2016,181 (1):1−20. doi: 10.1111/boj.12385
    [2]
    Guo HB. Cultivation of lotus (Nelumbo nucifera Gaertn. ssp. nucifera) and its utilization in China[J]. Genet Resour Crop Evol,2009,56 (3):323−330. doi: 10.1007/s10722-008-9366-2
    [3]
    Kuo YC,Lin YL,Liu CP,Tsai WJ. Herpes simplex virus type 1 propagation in HeLa cells interrupted by Nelumbo nucifera[J]. J Biomed Sci,2005,12 (6):1021−1034. doi: 10.1007/s11373-005-9001-6
    [4]
    Ohkoshi E,Miyazaki H,Shindo K,Watanabe H,Yoshida A,Yajima H. Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice[J]. Planta Med,2007,73 (12):1255−1259. doi: 10.1055/s-2007-990223
    [5]
    Moghaddam AH,Nabavi SM,Nabavi SF,Bigdellou R,Mohammadzadeh S,Ebrahimzadeh MA. Antioxidant,antihemolytic and nephroprotective activity of aqueous extract of Diospyros lotus seeds[J]. Acta Pol Pharm,2012,69 (4):687−692.
    [6]
    Lin TY,Hung CY,Chiu KM,Lee MY,Lu CW,Wang SJ. Neferine,an alkaloid from lotus seed embryos,exerts antiseizure and neuroprotective effects in a kainic acid-induced seizure model in rats[J]. Int J Mol Sci,2022,23 (8):4130. doi: 10.3390/ijms23084130
    [7]
    Lin ZY,Zhang C,Cao DD,Damaris RN,Yang PF. The latest studies on lotus (Nelumbo nucifera)-an emerging horticultural model plant[J]. Int J Mol Sci,2019,20 (15):3680. doi: 10.3390/ijms20153680
    [8]
    刘凤栾,费俞颉,俞洁. 洒锦荷花的彩斑特性及起源探讨[J]. 中国花卉园艺,2020(18):38−40.
    [9]
    Liu J,Wang YX,Zhang MH,Wang YM,Deng XB,et al. Color fading in lotus (Nelumbo nucifera) petals is manipulated both by anthocyanin biosynthesis reduction and active degradation[J]. Plant Physiol Biochem,2022,179:100−107. doi: 10.1016/j.plaphy.2022.03.021
    [10]
    Deng J,Chen S,Yin XJ,Wang K,Liu YL,et al. Systematic qualitative and quantitative assessment of anthocyanins,flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars[J]. Food Chem,2013,139 (1-4):307−312. doi: 10.1016/j.foodchem.2013.02.010
    [11]
    Cappellini F,Marinelli A,Toccaceli M,Tonelli C,Petroni K. Anthocyanins:from mechanisms of regulation in plants to health benefits in foods[J]. Front Plant Sci,2021,12:748049. doi: 10.3389/fpls.2021.748049
    [12]
    Zhang HY,Xu ZL,Zhao HW,Wang X,Pang J,et al. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia[J]. Redox Biol,2020,32:101474. doi: 10.1016/j.redox.2020.101474
    [13]
    Sunil L,Shetty NP. Biosynthesis and regulation of anthocyanin pathway genes[J]. Appl Microbiol Biotechnol,2022,106 (5):1783−1798.
    [14]
    Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends Plant Sci,2013,18 (9):477−483. doi: 10.1016/j.tplants.2013.06.003
    [15]
    Tanaka Y,Brugliera F. Flower colour and cytochromes P450[J]. Philos Trans Roy Soc B:Biol Sci,2013,368 (1612):20120432. doi: 10.1098/rstb.2012.0432
    [16]
    Tanaka Y,Sasaki N,Ohmiya A. Biosynthesis of plant pigments:anthocyanins,betalains and carotenoids[J]. Plant J,2008,54 (4):733−749. doi: 10.1111/j.1365-313X.2008.03447.x
    [17]
    Zhang HL,Zhang SY,Zhang H,Chen X,Liang F,et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.)[J]. Sci Rep,2020,10 (1):16835. doi: 10.1038/s41598-020-73859-7
    [18]
    Pu XD,Li Z,Tian Y,Gao RR,Hao LJ,et al. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration[J]. New Phytol,2020,227 (3):930−943. doi: 10.1111/nph.16552
    [19]
    Zhang LN,Zhang QY,Li WH,Zhang SK,Xi WP. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis[J]. BMC Genomics,2019,20 (1):876. doi: 10.1186/s12864-019-6261-5
    [20]
    Polturak G,Aharoni A. “La Vie en Rose”:biosynthesis,sources,and applications of betalain pigments[J]. Mol Plant,2018,11 (1):7−22. doi: 10.1016/j.molp.2017.10.008
    [21]
    Saito K,Yonekura-Sakakibara K,Nakabayashi R,Higashi Y,Yamazaki M,et al. The flavonoid biosynthetic pathway in Arabidopsis:structural and genetic diversity[J]. Plant Physiol Biochem,2013,72:21−34. doi: 10.1016/j.plaphy.2013.02.001
    [22]
    Nishihara M,Nakatsuka T. Genetic engineering of flavonoid pigments to modify flower color in floricultural plants[J]. Biotechnol Lett,2011,33 (3):433−441. doi: 10.1007/s10529-010-0461-z
    [23]
    Thill J,Miosic S,Ahmed R,Schlangen K,Muster G,et al. ‘Le Rouge et le Noir’:a decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers[J]. BMC Plant Biol,2012,12:225. doi: 10.1186/1471-2229-12-225
    [24]
    Katori M,Watanabe K,Nomura K,Yoneda K. Cultivar differences in anthocyanin and carotenoid pigments in the petals of the flowering lotus (Nelumbo spp.)[J]. J Jpn Soc Hortic Sci,2002,71 (6):812−817. doi: 10.2503/jjshs.71.812
    [25]
    Yang RZ,Wei XL,Gao FF,Wang LS,Zhang HJ,et al. Simultaneous analysis of anthocyanins and flavonols in petals of lotus (Nelumbo) cultivars by high-performance liquid chromatography-photodiode array detection/electrospray ionization mass spectrometry[J]. J Chromatogr A,2009,1216 (1):106−112. doi: 10.1016/j.chroma.2008.11.046
    [26]
    Chen S,Fang LC,Xi HF,Guan L,Fang JB,et al. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry[J]. Anal Chim Acta,2012,724:127−135. doi: 10.1016/j.aca.2012.02.051
    [27]
    Chen S,Xiang Y,Deng J,Liu YL,Li SH. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different lotus (Nelumbo) cultivars by HPLC-DAD-ESI-MSn[J]. PLoS One,2013,8 (4):e62291. doi: 10.1371/journal.pone.0062291
    [28]
    吴倩. 荷花花瓣和花粉类黄酮成分分析[D]. 南京: 南京农业大学, 2015: 15-49.
    [29]
    刘青青,张大生,刘凤栾,蔡栋,王晓晗,等. 荷花花色研究进展[J]. 园艺学报,2021,48(10):2100−2112. doi: 10.16420/j.issn.0513-353x.2021-0602

    Liu QQ,Zhang DS,Liu FL,Cai D,Wang XH,et al. Advances in flower color research on lotus (Nelumbo)[J]. Acta Hortic Sin,2021,48 (10):2100−2112. doi: 10.16420/j.issn.0513-353x.2021-0602
    [30]
    Tohge T,de Souza LP,Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants[J]. J Exp Bot,2017,68 (15):4013−4028. doi: 10.1093/jxb/erx177
    [31]
    Morita Y,Hoshino A. Recent advances in flower color variation and patterning of Japanese morning glory and petunia[J]. Breed Sci,2018,68 (1):128−138. doi: 10.1270/jsbbs.17107
    [32]
    Martin C,Prescott A,Mackay S,Bartlett J,Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J]. Plant J,1991,1 (1):37−49. doi: 10.1111/j.1365-313X.1991.00037.x
    [33]
    Austin MB,Noel JP. The chalcone synthase superfamily of type Ⅲ polyketide synthases[J]. Nat Prod Rep,2003,20 (1):79−110. doi: 10.1039/b100917f
    [34]
    Dong C,Yu AQ,Wang ML,Zheng XW,Diao Y,et al. Identification and characterization of chalcone synthase cDNAs (NnCHS) from Nelumbo nucifera[J]. Cell Mol Biol (Noisy-Le-Grand),2015,61 (8):112−117.
    [35]
    Li YK,Cui W,Qi XJ,Qiao CK,Lin MM,et al. Chalcone synthase-encoding AeCHS is involved in normal petal coloration in Actinidia eriantha[J]. Genes (Basel),2019,10 (12):949. doi: 10.3390/genes10120949
    [36]
    Tai DQ,Tian J,Zhang J,Song TT,Yao YC. A Malus crabapple chalcone synthase gene,McCHS,regulates red petal color and flavonoid biosynthesis[J]. PLoS One,2014,9 (10):e110570. doi: 10.1371/journal.pone.0110570
    [37]
    McKhann HI,Paiva NL,Dixon RA,Hirsch AM. Expression of genes for enzymes of the flavonoid biosynthetic pathway in the early stages of the Rhizobium-legume symbiosis[J]. Adv Exp Med Biol,1998,439:45−54.
    [38]
    Zhao DQ,Tao J,Han CX,Ge JT. Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.)[J]. Mol Biol Rep,2012,39 (12):11263−11275. doi: 10.1007/s11033-012-2036-7
    [39]
    Wang LX,Lui ACW,Lam PY,Liu GQ,Godwin ID,Lo C. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum[J]. Plant Biotechnol J,2020,18 (11):2170−2172. doi: 10.1111/pbi.13397
    [40]
    Tu YH,Liu F,Guo DD,Fan LJ,Zhu ZX,et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation[J]. BMC Plant Biol,2016,16 (1):132. doi: 10.1186/s12870-016-0813-5
    [41]
    Deng J,Fu ZY,Chen S,Damaris RN,Wang K,et al. Proteomic and epigenetic analyses of lotus (Nelumbo nucifera) petals between red and white cultivars[J]. Plant Cell Physiol,2015,56 (8):1546−1555. doi: 10.1093/pcp/pcv077
    [42]
    Kim EY,Kim CW,Kim S. Identification of two novel mutant ANS alleles responsible for inactivation of anthocyanidin synthase and failure of anthocyanin production in onion (Allium cepa L.)[J]. Euphytica,2016,212 (3):427−437. doi: 10.1007/s10681-016-1774-3
    [43]
    Deng J,Su MY,Zhang XY,Liu XL,Damaris RN,et al. Proteomic and metabolomic analyses showing the differentially accumulation of NnUFGT2 is involved in the petal red-white bicolor pigmentation in lotus (Nelumbo nucifera)[J]. Plant Physiol Biochem,2023,198:107675. doi: 10.1016/j.plaphy.2023.107675
    [44]
    Quattrocchio F,Wing JF,van der Woude K,Mol JNM,Koes R. Analysis of bHLH and MYB domain proteins:species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes[J]. Plant J,1998,13 (4):475−488. doi: 10.1046/j.1365-313X.1998.00046.x
    [45]
    Stracke R,Ishihara H,Huep G,Barsch A,Mehrtens F,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J,2007,50 (4):660−677. doi: 10.1111/j.1365-313X.2007.03078.x
    [46]
    Baudry A,Heim MA,Dubreucq B,Caboche M,Weisshaar B,Lepiniec L. TT2,TT8,and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana[J]. Plant J,2004,39 (3):366−380. doi: 10.1111/j.1365-313X.2004.02138.x
    [47]
    Cai TY,Ge-Zhang SJ,Song MB. Anthocyanins in metabolites of purple corn[J]. Front Plant Sci,2023,14:1154535. doi: 10.3389/fpls.2023.1154535
    [48]
    Zhang Y,Butelli E,Martin C. Engineering anthocyanin biosynthesis in plants[J]. Curr Opin Plant Biol,2014,19:81−90. doi: 10.1016/j.pbi.2014.05.011
    [49]
    Petroni K,Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J]. Plant Sci,2011,181 (3):219−229. doi: 10.1016/j.plantsci.2011.05.009
    [50]
    Chen YB,Wu PZ,Zhang C,Guo YL,Liao BB,et al. Ectopic expression of JcCPL1,2,and 4 affects epidermal cell differentiation,anthocyanin biosynthesis and leaf senescence in Arabidopsis thaliana[J]. Int J Mol Sci,2022,23 (4):1924. doi: 10.3390/ijms23041924
    [51]
    高国应,伍小方,张大为,周定港,张凯旋,严明理. MBW复合体在植物花青素合成途径中的研究进展[J]. 生物技术通报,2020,36(1):126−134. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738

    Gao GY,Wu XF,Zhang DW,Zhou DG,Zhang KX,Yan ML. Research progress on the MBW complexes in plant anthocyanin biosynthesis pathway[J]. Biotechnol Bull,2020,36 (1):126−134. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0738
    [52]
    Zhao XC,Zhang YR,Long T,Wang SC,Yang J. Regulation mechanism of plant pigments biosynthesis:anthocyanins,carotenoids,and betalains[J]. Metabolites,2022,12 (9):871. doi: 10.3390/metabo12090871
    [53]
    Lai B,Li XJ,Hu B,Qin YH,Huang XM,et al. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes,tissues,developmental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One,2014,9 (1):e86293. doi: 10.1371/journal.pone.0086293
    [54]
    Nesi N,Jond C,Debeaujon I,Caboche M,Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J]. Plant Cell,2001,13 (9):2099−2114. doi: 10.1105/TPC.010098
    [55]
    Dubos C,Stracke R,Grotewold E,Weisshaar B,Martin C,Lepiniec L. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci,2010,15 (10):573−581. doi: 10.1016/j.tplants.2010.06.005
    [56]
    Si ZZ,Wang LJ,Ji ZX,Zhao MM,Zhang K,Qiao YK. Comparative analysis of the MYB gene family in seven Ipomoea species[J]. Front Plant Sci,2023,14:1155018. doi: 10.3389/fpls.2023.1155018
    [57]
    Liu JY,Osbourn A,Ma PD. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Mol Plant,2015,8 (5):689−708. doi: 10.1016/j.molp.2015.03.012
    [58]
    Stracke R,Werber M,Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol,2001,4 (5):447−456. doi: 10.1016/S1369-5266(00)00199-0
    [59]
    Hichri I,Barrieu F,Bogs J,Kappel C,Delrot S,Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. J Exp Bot,2011,62 (8):2465−2483. doi: 10.1093/jxb/erq442
    [60]
    Naing AH,Kim CK. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants[J]. Plant Mol Biol,2018,98 (1):1−18.
    [61]
    Haga N,Kato K,Murase M,Araki S,Kubo M,et al. R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana[J]. Development,2007,134 (6):1101−1110. doi: 10.1242/dev.02801
    [62]
    Sun SS,Gugger PF,Wang QF,Chen JM. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)[J]. PeerJ,2016,4:e2369. doi: 10.7717/peerj.2369
    [63]
    Liu J, Wang YX, Deng XB, Zhang MH, Sun H, et al. Transcription factor NnMYB5 controls petal color by regulating GLUTATHIONE S-TRANSFERASE2 in Nelumbo nucifera[J]. Plant Physiol, 2023, kiad363.
    [64]
    Hao YQ,Zong XM,Ren P,Qian YQ,Fu AG. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci,2021,22 (13):7152. doi: 10.3390/ijms22137152
    [65]
    Qiu ZK,Wang XX,Gao JC,Guo YM,Huang ZJ,Du YC. The tomato Hoffman’s anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures[J]. PLoS One,2016,11 (3):e0151067. doi: 10.1371/journal.pone.0151067
    [66]
    Wang LH,Tang W,Hu YW,Zhang YB,Sun JQ,et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang[J]. Plant J,2019,99 (2):359−378. doi: 10.1111/tpj.14330
    [67]
    Gao C,Guo Y,Wang J,Li D,Liu K,et al. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana[J]. Plant Biol,2018,20 (1):3−9. doi: 10.1111/plb.12633
    [68]
    Deng J,Li JJ,Su MY,Lin ZY,Chen L,Yang PF. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis[J]. Plant Physiol Biochem,2021,158:518−523. doi: 10.1016/j.plaphy.2020.11.038
    [69]
    Lefebvre V,North H,Frey A,Sotta B,Seo M,et al. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy[J]. Plant J,2006,45 (3):309−319. doi: 10.1111/j.1365-313X.2005.02622.x
    [70]
    Ito S,Song YH,Josephson-Day AR,Miller RJ,Breton G,et al. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis[J]. Proc Natl Acad Sci USA,2012,109 (9):3582−3587. doi: 10.1073/pnas.1118876109
    [71]
    Oh E,Yamaguchi S,Kamiya Y,Bae G,Chung WI,Choi G. Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis[J]. Plant J,2006,47 (1):124−139. doi: 10.1111/j.1365-313X.2006.02773.x
    [72]
    Xu C,Min JR. Structure and function of WD40 domain proteins[J]. Protein Cell,2011,2 (3):202−214. doi: 10.1007/s13238-011-1018-1
    [73]
    Chen L,Cui YM,Yao YH,An LK,Bai YX,et al. Genome-wide identification of WD40 transcription factors and their regulation of the MYB-bHLH-WD40 (MBW) complex related to anthocyanin synthesis in Qingke (Hordeum vulgare L. var. nudum Hook. f.)[J]. BMC Genomics,2023,24 (1):166. doi: 10.1186/s12864-023-09240-5
    [74]
    De Vetten N,Quattrocchio F,Mol J,Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants,and animals[J]. Genes Dev,1997,11 (11):1422−1434. doi: 10.1101/gad.11.11.1422
    [75]
    Carey CC,Strahle JT,Selinger DA,Chandler VL. Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana[J]. Plant Cell,2004,16 (2):450−464. doi: 10.1105/tpc.018796
    [76]
    Walker AR,Davison PA,Bolognesi-Winfield AC,James CM,Srinivasan N,et al. The TRANSPARENT TESTA GLABRA1 locus,which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40 repeat protein[J]. Plant Cell,1999,11 (7):1337−1349. doi: 10.1105/tpc.11.7.1337
    [77]
    Yang XH,Wang JR,Xia XZ,Zhang ZQ,He J,et al. OsTTG1,a WD40 repeat gene,regulates anthocyanin biosynthesis in rice[J]. Plant J,2021,107 (1):198−214. doi: 10.1111/tpj.15285
    [78]
    Zhao MR,Li J,Zhu L,Chang P,Li LL,Zhang LY. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development[J]. Genes,2019,10 (7):496. doi: 10.3390/genes10070496
    [79]
    González-Villagra J,Cohen JD,Reyes-Díaz MM. Abscisic acid is involved in phenolic compounds biosynthesis,mainly anthocyanins,in leaves of Aristotelia chilensis plants (Mol.) subjected to drought stress[J]. Physiol Plant,2019,165 (4):855−866. doi: 10.1111/ppl.12789
    [80]
    Li Z,Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants[J]. Plant Physiol Biochem,2023,201:107835. doi: 10.1016/j.plaphy.2023.107835
    [81]
    王峰,王秀杰,赵胜男,闫家榕,卜鑫,等. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学,2020,53(23):4904−4917. doi: 10.3864/j.issn.0578-1752.2020.23.015

    Wang F,Wang XJ,Zhao SN,Yan JR,Bu X,et al. Light regulation of anthocyanin biosynthesis in horticultural crops[J]. Sci Agric Sin,2020,53 (23):4904−4917. doi: 10.3864/j.issn.0578-1752.2020.23.015
  • Related Articles

    [1]Yan Jingli, Wang Menghao, Liu Yanyan, Yang Ying, Wang Xufei, Cao Ya'nan. Identification and bioinformatics analysis of the FAD2 gene family in Aralia species[J]. Plant Science Journal, 2024, 42(4): 488-498. DOI: 10.11913/PSJ.2095-0837.23282
    [2]Li Cheng-Song, Liu Li-Juan, Liang Fang, Zhao Wei-Dong, Yang Chun-Lin, Liu Ying-Gao. Cloning, prokaryotic expression, and bioinformatics analysis of PaPR10-1 gene from Picea asperata Mast.[J]. Plant Science Journal, 2023, 41(2): 224-233. DOI: 10.11913/PSJ.2095-0837.22140
    [3]Ding Ya-Dong, Shu Huang-Ying, Gao Chong-Lun, Hao Yuan-Yuan, Cheng Shan-Han, Zhu Guo-Peng, Wang Zhi-Wei. Analysis of heat shock protein 70 gene family in Capsicum chinense Jacq.[J]. Plant Science Journal, 2021, 39(2): 152-162. DOI: 10.11913/PSJ.2095-0837.2021.20152
    [4]Liu Li-Juan, Liu Yu-Feng, Yang Shuai, Liu Ying-Gao. Cloning, expression, and bioinformatics analysis of the chitinase gene PlCHI in Picea likiangensis var. balfouriana[J]. Plant Science Journal, 2019, 37(4): 503-512. DOI: 10.11913/PSJ.2095-0837.2019.40503
    [5]ZHANG Lin, XU De-Lin, CHU Shi-Run, WU Gui-Ying, SHEN Fang, QIAN Gang. Bioinformatic Analysis of Tubulin-beta Gene in Senecio scandens Buch. -Ham. ex D. Don[J]. Plant Science Journal, 2014, 32(5): 487-492. DOI: 10.11913/PSJ.2095-0837.2014.50487
    [6]CAO Yi-Bo, LIU Ya-Jing, ZHANG Ling-Yun. cDNA Cloning and Bioinformatic Analysis of the sPPa1 Gene from Picea wilsonii[J]. Plant Science Journal, 2012, 30(4): 394-401. DOI: 10.3724/SP.J.1142.2012.40394
    [7]SHENG Hua, LIU Mei, HUA Wen-Ping, WANG Zhe-Zhi. Bioinformatics and Expression Pathogenesis-related Protein 10 Gene(SmPR-10) from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2011, 29(3): 340-346.
    [8]CHEN Yu-Zhong, ZHOU Yu-Ping, YE Hui, GUI Lin, GUO Pei-Guo, TIAN Chang-En. Cloning and Bioinformatics Analysis of IQM2 cDNA from Arabidopsis[J]. Plant Science Journal, 2010, 28(3): 353-358. DOI: 10.3724/SP.J.1142.2010.30353
    [9]He Miao, WU Xue, WANG Zhe-Zhi. Cloning and Bioinformatics Analysis of OsMsr3 Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2009, 27(6): 582-588.
    [10]CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266.
  • Cited by

    Periodical cited type(3)

    1. 贺文琪,柴国柱,薛矗,山晓丹,兰小中. 西藏11种菊科药用植物染色体核型研究. 种子. 2025(02): 190-201 .
    2. 李璨,刘庆龙,尤丽梅,林乙明,陈世品. 福建野生水生植物区系特征研究. 中国野生植物资源. 2025(03): 128-134 .
    3. 马启奥,孙楷,王宏超,李利平,李颖,李晓琳,程蒙,杨光,池秀莲. 高黎贡山区域中药材药性的组成特征及垂直格局. 中国现代中药. 2024(11): 1833-1842 .

    Other cited types(5)

Catalog

    Article views (176) PDF downloads (104) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return