Advance Search
JIANG Hao, HUANG Yu-Hui, ZHOU Guo-Yi, HU Xiao-Ying, LIU Shi-Zhong, TANG Xu-Li. Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest[J]. Plant Science Journal, 2012, (3): 250-260. DOI: 10.3724/SP.J.1142.2012.30250
Citation: JIANG Hao, HUANG Yu-Hui, ZHOU Guo-Yi, HU Xiao-Ying, LIU Shi-Zhong, TANG Xu-Li. Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest[J]. Plant Science Journal, 2012, (3): 250-260. DOI: 10.3724/SP.J.1142.2012.30250

Acclimation in Leaf Morphological and Eco-physiological Characteristics of Different Canopy-dwelling Epiphytes in a Lower Subtropical Evergreen Broad-leaved Forest

More Information
  • Received Date: November 28, 2011
  • Revised Date: January 03, 2012
  • Published Date: June 29, 2012
  • Epiphytes have been well characterized in terms of the morphological and eco-physiological traits that permit them to thrive in the complex forest canopy.Our aim was to characterize and analyze the morphological and eco-physiological traits of different canopy-dwelling epiphytes in a lower subtropical evergreen broad-leaved forest in Southern China.Results showed that the differences in morphological and eco-physiological characteristics between the upper and lower canopy-dwelling epiphytes were largely explained by changes in environmental factors such as photosynthetic active radiation (PAR),temperature,and humidity within the complex forest canopy.Two epiphytes,Dischidia chinensis and Psychotria serpens located in the upper canopy had low Tr (0.17±0.02 mmol H2O and 0.34±0.05 mmol H2O,respectively) and low Pmax (2.2±0.1 μmol CO2·m-2·s-1 and 3.2±0.4 μmol CO2·m-2·s-1,respectively) associated with thick leaf (558±63 μm and 217.1±33.1 μm,respectively) and small stomata size (185.7±3.7 μm2 and 225.4±5.2 μm2,respectively) to adapt to their upper dwelling environments (high temperature,low air humidity and high PAR).At the same time,the special structures led to high WUE (11.35±0.87 μmol CO2/mmol H2O and 7.88±1.31 μmol CO2/mmol H2O,respectively).However,the lower canopy-dwelling epiphytes Fissistigma glaucescens and Piper hancei had thin leaf (90.8±9.9 μm and 114.9±18.2 μm,respectively) and large stomata size (260.6±6.3 μm2 and 362.5±8.7 μm2,respectively).The ratios of palisade to spongy tissues thickness (P/S),the thickness of leaf epidermis thickness and other structures also changed with various canopy-dwelling heights.In comparison with Dischidia chinensis and Psychotria serpens located at upper canopy-dwelling conditions, Fissistigma glaucescens and Piper hancei showed high Pmax (9.5±1.3 μmol CO2·m-2·s-1 and 7.1±0.8 μmol CO2·m-2·s-1,respectively),high Tr (0.67±0.10 mmol H2O and 0.74±0.13 mmol H2O,respectively),and low WUE (4.4±1.0 μmol CO2/mmol H2O and 3.4±0.9 μmol CO2/mmol H2O,respectively),which was 1.2-3.3 times (Pmax), 1.2-2.3 times (Tr),and 30%-48% higher (WUE).
  • [1]
    Basset Y,Horlyck V,Wright S J.The Conservation of Forest Canopies: Policy and Science[M].Panama: Smithsonian Tropical Research Institute and UNEP Press,2003: 37-54.
    [2]
    Hammond P M,Kitching R L,Stork N E.The composition and richness of the tree-crown Coleoptera assemblage in an Australian subtropical forest[J].Ecotropica,1999,2: 99.
    [3]
    Parker G G,Lowman M D,Nadkami N M.Structure and Microclimate of Forest Canopies[M].San Diego: Academic Press,1995: 73-106.
    [4]
    Nadkarni N M.Biomass and mineral capital of epiphytes in an Acer macrophullum community of a temperate moist coniferous forest,Olympic Peninsula,Washington State[J].Can J Bot,1984,62: 2223-2228.
    [5]
    Lowman M D,Nadkarni N M.Forest Canopy[M],San Diego: Academic Press,1995: 3-119.
    [6]
    刘晓东,朱春泉,雷静品.杨树人工林冠层光合辐射分布的研究[J].林业科学,2000,36(3): 2-7.
    [7]
    Vierling L A,Wessman C A.Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy[J].Agr Forest Meteorol,2000,103: 265-278.
    [8]
    Nadkarni N M,Solano R.Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach[J].Oecologia,2002,131: 580-586.
    [9]
    Wolf J H D,Flamenco A.Patterns in species richness and distribution of vascular epiphytes in Chiapas,Mexico[J].J Biogeogr,2003,30: 1689-1707.
    [10]
    Kreft H,Kster N,Kuper W,Nieder J,et al.Diversity and biogeography of vascular epiphytes in Western Amazonian,Yasuní[J].E J Biogeogr,2004,31: 1463-1476.
    [11]
    王勋陵,王静.植物形态结构与环境[M].兰州: 兰州大学出版社,1989: 1-90.
    [12]
    Holbrook N M,Putz F E.From epiphyte to tree: differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes[J].Plant Cell Environ,1996,19: 631-642.
    [13]
    Givnish T J.Adaption to sun and shade: a whole-plant perspective[J].Aust J Plant Physiol,1988,15: 63-92.
    [14]
    Putz F E,Mooney H A.The Biology of Vines[M].London: Cambridge University Press,1991: 214-216.
    [15]
    Mendes M M,Gazarini L C,Rodrigures M L.Acclimation of Myrtus communis to contrasting Mediterranean light environments effects on structure and chemical composition of foliage and plant water relations[J].Environ Exp Bot,2001,45: 165-187.
    [16]
    蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学: 叶片解剖特征的比较[J].植物生态学报,2001,25(1): 90-98.
    [17]
    Urbas P.Adaptive and inevitable morphological of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light[J].Acta Oecologic,2000,21: 139-147.
    [18]
    李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005,22: 118-127.
    [19]
    江浩,周国逸,黄钰辉,等.南亚热带常绿阔叶林林冠不同部位藤本植物的光合生理特征及其对环境因子的适应[J].植物生态学报,2011,35(5): 567-576.
    [20]
    闫俊华,周国逸,韦琴.鼎湖山季风常绿阔叶林小气候特征分析[J].武汉植物学研究,2000,18(5): 397-404.
    [21]
    易俗,黄忠良,欧阳学军.鼎湖山生物圈保护区层间植物物种多样性的研究[J].生物多样性,2001,9(1): 56-61.
    [22]
    Putz F E,Holbrook N M.Notes on the nature history of hemiepiphytes[J].Selbyana,1986,9: 61-91.
    [23]
    Benavides D A M,Duque M A J,Duivenvoorden J F,et al.A first quantitative census of vascular epiphytes in rain forest of Colombian Amazonia[J].Biodivers Consevr,2005,14: 739-758.
    [24]
    Benzing D H,Vascular epiphytism: Taxonomic participation and adaptive diversity[J].Ann Mo Bot Gard,1987,74: 183-204.
    [25]
    Zotz G,Andrade J L.Water relations of two co-occurring epiphytic bromeliads[J].J Plant Physiol,1998,152: 545-554.
    [26]
    胡晓颖,徐信兰,王学海.三种兰花蕉叶表皮形态特征的比较研究[J].云南农业大学学报,1999,14(4): 26-29.
    [27]
    李鸣,高光跃,冯毓秀.獐牙菜属生药形态组织学的研究Ⅱ.叶片的比较微形态学研究[J].天然产物研究与开发,1994,6(4): 40-47.
    [28]
    Thomas S C,Bazzaz F A.Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees[J].Ecology,1999,80(5): 1607-1622.
    [29]
    潘瑞炽.植物生理学[M].第4版.北京: 高等教育出版社,2001: 55-57,91-95.
    [30]
    张弥,吴家兵,关德新,等.长白山阔叶红松林主要树种光合作用的光响应曲线[J].应用生态学报,2006,17(9):1575-1578.
    [31]
    Richardson A D,Beryln G.Spectral reflectance and photosynthetic properties of Betula papyrifera leaves along an elevational gradient on Mansfied,Vermount,USA[J].Am J Bot,2002,89(1): 88-94.
    [32]
    Herrick J D,Thomas R B.Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Li-quidambar styraciflun) in a forest ecosystem[J].Tree Physiology,1999,19: 779-786.
    [33]
    Wu F Z,Bao W K,Li L F,Wu N.Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings[J].Photosynthetica,2008,46: 40-48.
    [34]
    曾小平,赵平,蔡锡安,等.25种南亚热带植物耐阴性的初步研究[J].北京林业大学学报,2006,28(4): 88-95.
    [35]
    冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重、光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6): 901-910.
    [36]
    苏培玺,张立新.胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应[J].植物生态学报,2003,27: 34-40.
    [37]
    高松,苏培玺,严巧娣,等.C4荒漠植物猪毛菜与本土猪毛菜的叶片解剖结构及光合生理特性[J].植物生态学报,2009,33(2): 347-354.
    [38]
    贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18(3): 219-227.
    [39]
    Roscas G,Scarano F R.Leaf anatomical variation in Alchornea triplinervia(Spreng)Mull.Arg.(Euphorbiaceae)under distinct light and soil water regimes[J].Bot J Linn Soc,2001,136: 231-238.
    [40]
    Lambers H,Chapin Ⅲ F S,Pons T L.Plant Physiological Ecology[M].New York: Springer Press,2003: 14-16.
    [41]
    Chartzoulakis K,Patskas A,Kofidis G,et al.Water stress affects leaf anatomy,gas exchange,water relations and growth of two avocado cultivers[J].Scientia Horticulture,2003,95: 39-50.
    [42]
    Terashima L,Wong S C,Osmond C B,et al.Characteristation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies[J].Plant Cell Environ,1988,29: 385-394.
  • Related Articles

    [1]Sun Xiaoyu, Chen Fangqing, Lü Kun, Liu Jinrong, Huang Yongwen, Liu Yangyun. Temporal and spatial variation of sexual reproduction in a remnant population of the endangered species Myricaria laxiflora (Franch.) P. Y. Zhang et Y. J. Zhang[J]. Plant Science Journal, 2024, 42(3): 304-313. DOI: 10.11913/PSJ.2095-0837.23197
    [2]Reyihanguli · Xiadi, Yang Lei, Rumananmu · Nihemaiti, Jia Xian-De, Wu Li-Mei, Lü Hai-Ying. Distribution patterns of the soil seed bank of Crataegus songarica K. Koch with altitude in the western Tianshan wild fruit forest[J]. Plant Science Journal, 2023, 41(2): 172-182. DOI: 10.11913/PSJ.2095-0837.22153
    [3]Gao Gui-Bin, Wen Xing, Wu Zhi-Zhuang, Zhong Hao, Pan Yan-Hong, Zhang Xiao-Ping. Quantitative characteristics and distribution patterns of rhizome branches of potted Phyllostachys praecox C. D. Chu et C. S. Chao ‘Prevernalis’ seedlings in different soils[J]. Plant Science Journal, 2022, 40(4): 565-575. DOI: 10.11913/PSJ.2095-0837.2022.40565
    [4]Huang Zhi-Hao, Zhou Xin, Zhang Xiao-Ran, Pu Zhen, Xing Shao-Hua. Relationship between the distribution of Phellodendron amurense and environmental factors in the Beijing area[J]. Plant Science Journal, 2017, 35(1): 56-63. DOI: 10.11913/PSJ.2095-0837.2017.10056
    [5]SHEN Heng-Lun, XU Yao-Yang, WANG Lan, ZHANG Min, KONG Ling-Hui, CAI Qing-Hua. Spatial and Temporal Variations of Phytoplankton in Danjiangkou Reservoir and its Affecting Factors[J]. Plant Science Journal, 2011, 29(6): 683-690.
    [6]LI Ying, ZHONG Zhang-Cheng. Differentiation of Soil Enzyme Activities in Different Soil-Heavenly Bamboo Systems[J]. Plant Science Journal, 2006, 24(2): 144-148.
    [7]ZHU Sheng-Chao. The Distributional Feature of Plant in Lishui Ecology Demonstration Area[J]. Plant Science Journal, 2002, 20(2): 113-118.
    [8]ZHANG Yun-Fei, YANG Chi, CHEN Jia-Kuan. Spatial-temporal Change of Landscape Structure in the Distribution Region of Tetraena mongolica[J]. Plant Science Journal, 2001, 19(1): 25-30.
    [9]Ding Yi, Feng Weiguo, Ding Xiaoming, Yuan Wenjing. STUDY ON RELATION BETWEEN THE ESTERASE ISOZYME ZYMOGRAM AND DISTRICT DISTRIBUTION OF CULTIVARS IN HUBEI BARLEY[J]. Plant Science Journal, 1998, 16(1): 5-10.
    [10]Ni Xueming, Zhou Yuanje, Yu Bin, Zhao Jiarong. ON THE GEOGRAPHICAL DISTRIBUTION OF THE NYMPHAEALES[J]. Plant Science Journal, 1995, 13(2): 137-146.

Catalog

    Article views (4936) PDF downloads (1941) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return