Advance Search
XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
Citation: XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429

Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis

More Information
  • Received Date: April 16, 2013
  • Revised Date: June 27, 2013
  • Published Date: October 29, 2013
  • The D2 protein of the Photosystem Ⅱ (PSⅡ) reaction center complex is encoded by the chloroplast gene psbD.To gain a better understanding of the adaptive radiation of core leptosporangiate ferns in low-light environments,we sequenced psbD in twelve species and collected eight published sequences to represent extant ferns in order level.We then evaluated the selection pressure of D2 protein based on ω values (nonsynonymous synonymous substitution ratio).The results of statistical tests based on different models indicated that most sites and branches were under strong negative selection,but tree ferns exhibited a slower evolutionary rate and higher ω value compared with other ferns.Co-evolution analysis based on different approaches showed that the D2-R168,D2-H245 and D2-M272 of tree ferns were involved in the same co-evolution network.
  • [1]
    Crane P R,Friis E M,Pedersen K R. The origin and early diversification of angiosperms[J].Nature, 1995, 374(6517): 27-33.
    [2]
    Schneider H,Schuettpelz E,Pryer K M,Cranfill R,Magallon S,Lupia R. Ferns diversified in the sha-dow of angiosperms[J].Nature, 2004, 428(6982): 553-557.
    [3]
    Page C N. Ecological strategies in fern evolution:a neopteridological overview[J].Rev Palaeobot Palyno, 2002, 119(1-2): 1-33.
    [4]
    孙瑞雪,杨春虹.光系统Ⅱ的结构与功能以及光合膜对环境因素的响应机制[J].生物物理学报, 2012, 28(7): 537-548.
    [5]
    Shi L X,Hall M,Funk C,Schroder W P. Photosystem Ⅱ,a growing complex:updates on newly discovered components and low molecular mass proteins[J].Biochim Biophys Acta, 2012, 1817: 13-25.
    [6]
    Marder J B,Chapman D J,Telfer A,Nixon P J,Barber J. Identification of psbA and psbD Gene-Pro-ducts,D1 and D2,as reaction center proteins of photosystem-2[J].Plant Mol Biol, 1987, 9(4): 325-333.
    [7]
    Diner B A,Rappaport F. Structure,dynamics,and energetics of the primary photochemistry of photosystem Ⅱ of oxygenic photosynthesis[J].Annu Rev Plant Biol, 2002, 53: 551-580.
    [8]
    Yang Z,Bielawski J P.Statistical methods for detecting molecular adaptation[J].Trends Ecol Evol, 2000, 15(12): 496-503.
    [9]
    Süel G M,Lockless S W,Wall M A,Ranganathan R.Evolutionarily conserved networks of residues mediate allosteric communication in proteins[J].Nature Struct Biol, 2002, 10: 59-69.
    [10]
    吕品一,郑珩,劳兴珍.蛋白质共进化分析研究进展[J].生物信息学, 2010(1): 34-37.
    [11]
    Fares M A.Computational and statistical methods to explore the various dimensions of protein evolution[J].Current Bioinformatics, 2006, 1(2): 207-217.
    [12]
    Smith A R,Pryer K M,Schuettpelz E,Korall P,Schneider H,Wolf P G. A classification for extant ferns[J].Taxon, 2006, 55(3): 705-731.
    [13]
    刘红梅,王丽,张宪春,曾辉.石松类和蕨类植物研究进展: 兼论国产类群的科级分类系统[J].植物分类学报, 2008, 46(6): 808-829.
    [14]
    Edgar R C.MUSCLE:a multiple sequence alignment method with reduced time and space complexity[J].BMC Bioinformatics, 2004, 5: 113.
    [15]
    Posada D,Crandall K. Modeltest: testing the model of DNA substitution[J].Bioinformatics, 1998, 14(9): 817-818.
    [16]
    Ronquist F,Teslenko M,Van Der Mark P,Ayres D L,Darling A,Hohna S,Larget B,Liu L,Suchard M A,Huelsenbeck J P. MrBayes 3.2:Efficient baye-sian phylogenetic inference and model choice across a large model space[J].Syst Biol, 2012, 61(3): 539-542.
    [17]
    Rambaut A,Drummond A. Tracer v1.5[CP].http://tree.bio.ed.ac.uk/software/tracer/[2009-11-30].
    [18]
    Yang Z H. PAML 4: Phylogenetic analysis by maximum likelihood[J].Mol Biol Evol, 2007, 24(8): 1586-1591.
    [19]
    Yang Z H. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution[J].Mol Biol Evol, 1998, 15(5): 568-573.
    [20]
    Nielsen R,Yang Z H. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene[J].Genetics, 1998, 148(3): 929-936.
    [21]
    Zhang J Z,Nielsen R,Yang Z H. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J].Mol Biol Evol, 2005, 22(12): 2472-2479.
    [22]
    Stern A,Doron-Faigenboim A,Erez E,Martz E,Bacharach E,Pupko T.Selecton 2007:advanced models for detecting positive and purifying selection using a Bayesian inference approach[J].Nucleic Acids Res, 2007, 35: 506-511.
    [23]
    Delport W,Poon A F Y,Frost S D W,Pond S L K.Datamonkey 2010:a suite of phylogenetic analysis tools for evolutionary biology[J].Bioinformatics, 2010, 26(19): 2455-2457.
    [24]
    Göbel U,Sander C,Schneider R,Valencia A. Correlated mutations and residue contacts in proteins[J].Protein:Struct Funct Genet, 1994, 18(4): 309-317.
    [25]
    Pollock D D,Taylor W R,Goldman N.Coevolving protein residues:maximum likelihood identification and relationship to structure[J].J Mol Biol, 1999, 287(1): 187-198.
    [26]
    Martin L,Gloor G,Dunn S,Wahl L. Using information theory to search for co-evolving residues in proteins[J].Bioinformatics, 2005, 21(22): 4116-4124.
    [27]
    Fares M A,Mcnally D. CAPS:coevolution analysis using protein sequences[J].Bioinformatics, 2006, 22(22): 2821-2822.
    [28]
    Poon A F,Lewis F I,Frost S D,Pond S L K. Spidermonkey:rapid detection of co-evolving sites using Bayesian graphical models[J].Bioinformatics, 2008, 24(17): 1949-1950.
    [29]
    Gouveia-Oliveira R,Roque F S,Wernersson R,Sicheritz-Ponten T,Sackett P W,Molgaard A,Pe-dersen A G.InterMap3D: predicting and visualizing co-evolving protein residues[J].Bioinformatics, 2009, 25(15): 1963-1965.
    [30]
    Pryer K M,Schuettpelz E,Wolf P G,Schneider H,Smith A R,Cranfill R.Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences[J].Am J Bot, 2004, 91(10): 1582-1598.
    [31]
    Rothfels C J,Windham M D,Grusz A L,Gastony G J,Pryer K M.Toward a monophyletic Notholaena (Pteridaceae):resolving patterns of evolutionary convergence in xeric-adapted ferns[J].Taxon, 2008, 57(3): 712-724.
    [32]
    Schuettpelz E,Pryer K M. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy[J].Proc Natl Acad Sci USA, 2009, 106(27): 11200-11205.
    [33]
    Korall P,Schuettpelz E,Pryer K M. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns[J].Evolution, 2010, 64(9): 2786-2792.
    [34]
    Wikstrom N,Pryer K M. Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group Ⅱ intron among ferns and horsetails[J].Mol Phylogenet Evol, 2005, 36(3): 484-493.
    [35]
    Windisch P G,Pereira-Noronha M. Notes on the ecology and development of Plagiogyria fialhoi[J].Am Fern J, 1983: 79-84.
    [36]
    Smith S A,Donoghue M J. Rates of molecular evolution are linked to life history in flowering plants[J].Science, 2008, 322(5898): 86-89.
    [37]
    Wang T,Su Y,Li Y. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae):effects of reproductive strategy[J].Plos One, 2012, 7(7): e41780.
    [38]
    Umena Y,Kawakami K,Shen J R,Kamiya N. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 [J].Nature, 2011, 473(7345): 55-60.

Catalog

    Article views (1753) PDF downloads (3432) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return