Advance Search
YUAN Ju-Hong, HU Mian-Hao. Effect of EDDS Treatments on FTIR-ATR, SEM-EDXS Features and Physiological Characteristics of Coleus blumei Roots under Se Stress[J]. Plant Science Journal, 2014, 32(6): 620-629. DOI: 10.11913/PSJ.2095-0837.2014.60620
Citation: YUAN Ju-Hong, HU Mian-Hao. Effect of EDDS Treatments on FTIR-ATR, SEM-EDXS Features and Physiological Characteristics of Coleus blumei Roots under Se Stress[J]. Plant Science Journal, 2014, 32(6): 620-629. DOI: 10.11913/PSJ.2095-0837.2014.60620

Effect of EDDS Treatments on FTIR-ATR, SEM-EDXS Features and Physiological Characteristics of Coleus blumei Roots under Se Stress

More Information
  • Received Date: March 02, 2014
  • Available Online: October 31, 2022
  • Published Date: December 29, 2014
  • To understand the physiological mechanism of -ethylenediamine disuccinic acid (EDDS) inducing plant resistance to selenium (Se), a hydroponic experiment with different concentrations of EDDS (0, 0.5, 1.0, 1.5, 2.5, and 5.0 mmol/L) was conducted to investigate the chemical component changes in Coleus blumei roots under Se stress (1.0 mg/L) using scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDXS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) with physiological trait changes. Results showed that the peak shape of the C. blumei root component remained invariable, as observed by FTIR-ATR spectra. A significant transmission peak shift of some function groups, such as hydroxyl groups, acid amide groups and fingerprint region, was obtained when they participated in the process of absorbing Se. There was good correspondence between the changes in the physiological characteristics and changes in samples based on the indices of wave number absorbance of FTIR-ATR spectra, and FTIR-ATR was more sensitive and convenient. SEM-EDXS analysis showed that the element contents of K, Mg, Fe and Si in the roots increased and the content of Ca decreased with increasing EDDS concentration.
  • [1]
    杜玉潇, 李亚男, 陈大清. 植物硒代谢积累及相关酶的研究进展[J]. 热带亚热带植物学报, 2007, 15(3): 269-276.
    [2]
    Gamani RJ, James WB. Role of redox potential in chemical transformations of selenium in soils[J]. Soil Sci Soc Am J, 1996, 60(4): 1056-1063.
    [3]
    郭宇. 恩施地区硒的地球化学研究及富硒作物栽培实验研究[D]. 武汉: 中国地质大学, 2012.
    [4]
    江用彬, 季宏兵, 李甜甜, 王丽新. 环境硒污染的植物修复研究进展[J]. 矿物岩石地球化学通报, 2007, 26(1): 98-104.
    [5]
    Bañuelos GS, Ajwa HA, Terry N, Zayed A. Phytoremediation of selenium laden soils: A new technology[J]. J Soil Water Conserv, 1997, 52(6): 426-430.
    [6]
    Shardendu N, Salhani N, Boulyga SF, Stengel E. Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland[J]. Chemosphere, 2003, 50(8): 967-973.
    [7]
    Lin ZQ, Cervinka V, Pickering IJ, Zayed A, Terry N. Managing selenium-contaminated agricultural drainage water by the integrated on-farm drainage management system: role of selenium volatilization[J]. Water Res, 2002, 36(12): 3150-60.
    [8]
    Wu L. Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium[J]. Ecotox Environ Safe, 2004, 57(3): 257-269.
    [9]
    Vassil AD, Kapulnik Y, Raskin I, Salt DE. The role of EDTA in lead transport and accumulation by indian mustard[J]. Plant Physiol, 1998, 117(2): 447-453.
    [10]
    Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environ Sci Technol, 1997, 31(3): 860-865.
    [11]
    Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R. Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: The use of NTA and sulfur amendments[J]. Environ Sci Technol, 2000, 34(9): 1778-1783.
    [12]
    Tandy S, Ammann A, Schulin R, Nowack B. Biodegradation and speciation of residual S-S-ethy-lenediaminedisuccinic acid (EDDS) in soil solution left after soil washing[J]. Environ Pollut, 2006, 142(2): 191-199.
    [13]
    Luo CL, Shen Z, Lou L, Li X. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compound[J]. Environ Pollut, 2006, 144(3): 862-871.
    [14]
    Meers E, Tack FMG, Verloo MG. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation[J]. Chemosphere, 2008, 70(3): 358-363.
    [15]
    刘士哲, 林东教, 唐淑军, 罗健. 利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J]. 应用生态学报, 2004, 15(7): 1261-1265.
    [16]
    赵欣胜, 崔丽娟, 摆亚军, 田魁详, 李伟强. 水培彩叶草抑制藻类繁殖的试验研究[J]. 环境污染与防治, 2011, 33(8): 1-3,17.
    [17]
    陈文慧. 模拟人工湿地处理含镉无机废水的研究[D]. 南宁: 广西大学农学院, 2008.
    [18]
    Panizza DA, Carrillo GR, Bernal GM,Vaca MM, Duran-Dominguez-de-Bazua C. Exploration of the ability of Coleus blumei to accumulate aluminum[J]. Int J Phytoremediat, 2011, 13(5): 421-33.
    [19]
    赵兰枝, 毛达, 林紫玉, 杨湘, 陈进洁, 张允伟. 不同营养液对彩叶草色素含量及光合作用的影响[J]. 广东农业科学, 2007(6): 30-32.
    [20]
    石贵玉, 粱士楚, 黄雅丽, 韦宇静, 李佳枚. 互花米草幼苗对重金属镉胁迫的生理响应[J]. 广西植物, 2013, 33(6):812-816.
    [21]
    张振兴, 孙锦, 郭世荣, 王丽萍, 童辉. 增施钙素对盐胁迫下西瓜幼苗生长和可溶性蛋白含量及组分的影响[J]. 南京农业大学学报, 2011, 34(5): 20-24.
    [22]
    付明, 卢嫣红, 姚元枝, 任宝红. 紫外分光光度法测定藜蒿的硒含量[J]. 江苏农业科学, 2009(5): 240-241.
    [23]
    王赢. 铝胁迫下蚕豆FTIR特征及生理特性的研究[D]. 云南: 昆明理工大学, 2010.
    [24]
    Dean AP, Estrada B, Nicholson JM, Sigee DC. Molecular response of anabaena flos-aquae to differing concentrations of phosphorus: A combined Fourier transform infrared and X-ray microanalytical study[J]. Phycologia Res, 2008, 56(3): 193-201.
    [25]
    Mohaned GF, Mohaned SS, Safaa KSKH, Ahmed HMS, Mohie KM. Application of FTIR spectroscopy for rapid and simultaneous quality determination of some fruit products[J]. Nat Sci, 2011, 9(11): 21-31.
    [26]
    Prabhu M, Kavitha K, Manivasakan P, Rajendran V, Kulandaivelu P. Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications[J]. Ceram Int, 2013, 39(2): 1683-1694.
    [27]
    Davis R, Mauer LJ. Fourier Transform Infrared (FTIR) Spectroscopy: A rapid tool for detection and analysis of foodborne pathogenic bacteria[M]//Méndez-Vilas A ed. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Spain: Formatex Research Center, 2010:1582-1594.
    [28]
    顾艳红, 刘鹏, 蔡琪敏, 陈洁, 谢鸿锴. FTIR结合生理特性研究镉胁迫对果灰藓的影响[J]. 光谱学与光谱分析, 2009, 29(3): 620-623.
    [29]
    Luo CL, Shen ZG, Li XD. Enhanced phytoextraction of Cu, Pb, Zn, and Cd with EDTA and EDDS[J]. Chemosphere, 2005, 59(1): 1-11.
    [30]
    Tandy S, Schulin R, Nowack B. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers[J]. Chemosphere, 2008, 62(9): 1454-1463.
    [31]
    Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L.[J]. J Hazard Mater, 2009, 170(2-3): 1156-1163.
    [32]
    何宝燕, 尹华, 彭辉, 叶锦韶, 杨峰, 秦华明, 张娜. 酵母菌吸附重金属铬的生理代谢机理及细胞形貌分析[J]. 环境科学, 2007, 28(1): 194-198.
    [33]
    乔琳, 傅兆麟, 乔传英. X射线能谱和FTIR分析铜胁迫对玉米幼苗的影响[J]. 核农学报, 2011, 25(4): 0807-0811.
    [34]
    Yang SC, Li YB, Lin P. Change of leaf caloric value from Avicennia marine and Aegiceras corni-culatum mangrove plants under cold stress[J]. J Oceanography in Tai, 2003, 22(1): 46-52.
    [35]
    Römkens P, Bouwrnan L, Japenga J, Draaisma C. Potentials and drawbacks of chelate-enhanced phytoremediation of soil[J]. Environ Pollut, 2002, 116(1): 109-121.
    [36]
    韩冬芳, 王德汉, 黄培钊, 段继贤, 葛仁山, 周伟莉. 不同形态镁对'早熟5号’大白菜产量及品质的影响[J]. 园艺学报, 2010, 37(10): 1655-1660.
    [37]
    武晓燕. 乙酰水杨酸对水生植物重金属毒害的缓解效应[D]. 南京: 南京师范大学, 2005.
    [38]
    Chen BL, Johnson EJ, Chefetz B, Zhu LZ, Xing BS. Sorption of polar and nonpolar aromatic orga-nic contaminants by plant cuticular materials: the role of polarity and accessibility[J]. Environ Sci Technol, 2005, 39(16): 6138-6146.
    [39]
    Solís-Domínguez FA, González-Chávez MC, Carrillo-González R, Rodriguez-Vazquez R. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system[J]. J Hazard Mater, 2007, 141(3): 630-636.
    [40]
    房江育, 马雪泥. 硅与植物抗逆性研究进展[J]. 中国农学通报, 2005, 21(11): 304-306.
    [41]
    Neumann D, zur Nieden U. Silicon and heavy metal tolerance of higher plants[J]. Phytochemistry, 2001, 56(7): 685-692.
    [42]
    Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice[J]. Plant Physiol, 2010, 153(4): 1871-1877.
  • Related Articles

    [1]Jia Xiande, Lü Haiying, Wu Limei, Yang Yinan, Huang Renhao, Wang Hao, Niu Xin. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal, 2024, 42(2): 150-159. DOI: 10.11913/PSJ.2095-0837.23157
    [2]Liu Xiong-Sheng, Xiao Yu-Fei, Wang Yong, Huang Rong-Lin, Jiang Ying, Liu Fei, Jiang Yi. Anatomical structures of vegetative organs of Keteleeria fortunei (Murr.)Carr.var. cyclolepis (Flous) Silba and its ecological adaptability[J]. Plant Science Journal, 2020, 38(1): 39-46. DOI: 10.11913/PSJ.2095-0837.2020.10039
    [3]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [4]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [5]Li Na, Guo Xue-Min, Li Ming, Bai Lan. Comparison of leaf anatomical structures between female and male Broussonetia papyrifera(L.) Vent.[J]. Plant Science Journal, 2017, 35(2): 164-170. DOI: 10.11913/PSJ.2095-0837.2017.20164
    [6]WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175
    [7]SHEN Shi-Kang, ZHANG Xin-Jun, WU Fu-Qin, YANG Guan-Song, WANG Yue-Hua, SUN Wei-Bang, LIN Ru-Tao. Study on the Anatomical Structures of Rhododendron protistum var. giganteum with an Extremely Small Population[J]. Plant Science Journal, 2016, 34(1): 1-8. DOI: 10.11913/PSJ.2095-0837.2016.10001
    [8]YANG Zhi-Jian, FENG Jin-Ling, CHEN Hui. Study on the Anatomical Structures in Development of the Nurse Seed Grafted Union of Camellia oleifera[J]. Plant Science Journal, 2013, 31(3): 313-320. DOI: 10.3724/SP.J.1142.2013.30313
    [9]LU Chang, WANG Fang, ZHANG Xiao-Ping. Leaf Comparation on Anatomical Structure and Epidermal Characteristics of Pteroceltis tatarinowii Maxim. in Different Areas[J]. Plant Science Journal, 2012, 30(4): 337-351. DOI: 10.3724/SP.J.1142.2012.40337
    [10]TAO Yong, JIANG Ming-Xi. Study on Anatomical Structure Adaptation of Stem of Alternanthera philoxeroides (Mart.) Griseb to Various Water Condition[J]. Plant Science Journal, 2004, 22(1): 65-71.
  • Cited by

    Periodical cited type(10)

    1. 林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 .
    2. 林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 .
    3. 艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 .
    4. 李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 .
    5. 祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 .
    6. 古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 .
    7. 张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 .
    8. 周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 . 本站查看
    9. 杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 .
    10. 赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 .

    Other cited types(15)

Catalog

    Article views (1208) PDF downloads (1345) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return