Advance Search
SHEN Tao, ZHANG Ji, ZHAO Yan-Li, ZUO Zhi-Tian, WANG Yuan-Zhong. Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems[J]. Plant Science Journal, 2015, 33(4): 472-481. DOI: 10.11913/PSJ.2095-0837.2015.40472
Citation: SHEN Tao, ZHANG Ji, ZHAO Yan-Li, ZUO Zhi-Tian, WANG Yuan-Zhong. Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems[J]. Plant Science Journal, 2015, 33(4): 472-481. DOI: 10.11913/PSJ.2095-0837.2015.40472

Chemometric Analysis of the Stem and Leaf of Gentiana rigescens in Agroforestry Systems

More Information
  • Received Date: January 15, 2015
  • Published Date: August 27, 2015
  • A method for HPLC fingerprinting of the aerial parts of Gentiana rigescens Franch. ex Hemsl. in agroforestry and monoculture systems was established. Contents of the main bioactive compounds, such as loganic acid, swertiamarin, gentiopicroside and sweroside, were determined. Variations in the chemometric characteristics of the stems and leaves under different cultivation systems were investigated, with correlation analysis, similarity analysis, partial least squares discriminant analysis (PLS-DA) and variable importance in the projection (VIP) analysis used to investigate these variations. Quantitative analysis showed that gentiopicroside, swertiamarin, loganic acid and sweroside contents ranged from (15.28±11.34) mg/g to (24.59±7.84) mg/g, (4.10±1.64) mg/g to (31.67±22.70) mg/g, (1.85±0.92) mg/g to (7.43±7.64) mg/g, and (1.03±0.17) mg/g to (1.58±0.50) mg/g, respectively. Total contents of the four bioactive compounds in leaves were higher than those in stems. Total content of the four bioactive compounds in the aerial part was the highest in the plant intercropped with Alnus nepalensis D. Don and was the lowest in the plant intercropped with Juglans regia L.. Correlation analysis showed that the variation in iridoid and secoiridoid content had significant (P < 0.05) or very significant (P < 0.01) positive correlation in the same part and in different parts, respectively. Similarities of the stem samples ranged from 0.989 to 0.992. Similarities of the leaf samples ranged from 0.988 to 0.996. The chemical constituents in stems and leaves were similar. However, the contents of those compounds were different. PLS-DA analysis showed that the chemometric characteristics of the stems and leaves were very different. Samples collected from different cultivation systems were classified as different groups. Chemical compounds in the leaves were more affected by the cultivation system than those in the stems. These results provide useful information for the study of agroforestry systems of G. rigescens Franch. ex Hemsl. and sustainable use of medicinal materials.
  • [1]
    Dai CC, Chen Y, Wang XX, Li PD. Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China[J]. Agroforest Syst, 2013, 87(2): 417-426.
    [2]
    Sonwa DJ, Weise SF, Schroth G, Janssens MJ, Shapiro HY. Plant diversity management in cocoa agroforestry systems in West and Central Africa-effects of markets and household needs[J]. Agroforest Syst, 2014, 88(6): 1021-1034.
    [3]
    Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hlscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger, TC. Multifunctional shade-tree management in tropical agroforestry landscapes-a review[J]. J App Ecol, 2011, 48(3): 619-629.
    [4]
    Zou X, Sanford Jr RL. Agroforestry systems in China: a survey and classification[J]. Agroforest Syst, 1990, 11(1): 85-94.
    [5]
    Gao L, Xu H, Bi H, Xi W, Bao B, Wang X, Bi C, Chang YF. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China[J]. PLoS ONE, 2013, 8(7): e70739.
    [6]
    Cao FL, Kimmins JP, Wang JR. Competitive interactions in ginkgo and crop species mixed agrofo-restry systems in Jiangsu, China[J]. Agroforest Syst, 2012, 84(3): 401-415.
    [7]
    Bari MS, Rahim MA. Economic evaluation and yield performance of some medicinal plants in coconut based multistoried agroforestry systems[J]. The Agriculturists, 2012, 10(1): 71-80.
    [8]
    Chamoli M, Varshney VK, Srivastava PK, Pandey R, Dayal R. TLC-densitometric evaluation of three major bioactive diterpene lactones in Andrographis paniculata intercropped with Morus alba[J]. J Liq Chromatogr R T, 2014, 37(16): 2258-2274.
    [9]
    段金廒, 吴启南, 宿树兰, 周荣汉. 中药资源化学学科的建立与发展[J]. 中草药, 2012, 43(9): 1665-1671.
    [10]
    李远菊, 张霁, 王元忠, 张金渝, 金航. 药用植物复合种植研究进展[J]. 世界科学技术: 中医药现代化, 2013, 15(9): 1941-1947.
    [11]
    周涛, 张小波, 郭兰萍, 蔺阁, 江维克, 艾强, 张成刚. 粗毛淫羊藿不同部位不同生境中淫羊藿苷总黄酮含量的变化分析[J]. 中国中药杂志, 2012, 37(13): 1917-1921.
    [12]
    李强, 杜思邈, 张忠亮, 吕春明, 周永全, 赵燕, 张宁. 中药指纹图谱技术进展及未来发展方向展望[J]. 中草药, 2013, 44(22): 3095-3102.
    [13]
    Xiong H, Lawrence XY, Qu H. Batch-to-batch quality consistency evaluation of botanical drug products using multivariate statistical analysis of the chromatographic fingerprint[J]. AAPS PharmSciTech, 2013, 14(2): 802-810.
    [14]
    Alaerts G, Pieters S, Logie H, Van Erps J, Merino-Arévalo M, Dejaegher B, Smeyers-Verbeke B, Vander Heyden Y. Exploration and classification of chromatographic fingerprints as additional tool for identification and quality control of several Artemi-sia species[J]. J Pharmaceut Biomed, 2014, 95(7): 34-46.
    [15]
    Zhu J, Fan X, Cheng Y, Agarwal R, Moore CM, Chen ST, Tong W. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: A case study using Panax notoginseng[J]. PLoS ONE, 2014, 9(1): e87462.
    [16]
    Kwon YK, Ahn MS, Park JS, Liu JR, In DS, Min BW, Kim SW. Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis[J]. J Ginseng Res, 2014, 38(1): 52-58.
    [17]
    Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM. Application of chemometrics in authentication of herbal medicines: a review[J]. Phytochem Analysis, 2013, 24(1): 1-24.
    [18]
    何延农, 刘尚武, 吴庆如. 中国植物志:第62卷[M]. 北京: 科学出版社, 1988: 100-101.
    [19]
    中华人民共和国药典委员会. 中华人民共和国药典:一部[M]. 北京: 中国医药科技出版社, 2010: 89-90.
    [20]
    Yang JL, Liu LL, Shi YP. Phytochemicals and biological activities of Gentiana species[J]. Nat Prod Commun, 2010, 5(4): 649-664.
    [21]
    Zhang JY, Shen T, Wang YZ, Yang MQ, Zhang J, Yang SB, Yang WZ, Zhao YL, Zhao ZL, Yang TM, Jin H. Effect of cultivation condition on the active component contents in Gentiana rigescens, a traditional Chinese medicine[J]. Afr J Pharm Pharmaco, 2013, 7(18): 1096-1102.
    [22]
    沈涛, 杨美权, 赵振玲, 张智慧, 王元忠, 金航, 张金渝, 王跃华. 滇龙胆中萜类物质积累的动态变化[J]. 植物学报, 2012, 46(6): 652-657.
    [23]
    Zhou GS, Yang NY, Tang YP, Duan JA, Jiang S, Yang, H, Gou S, Song BS, He ZQ. Chemical constituents from the aerial parts of Angelica sinensis and their bioactivities[J]. Chin J Nat Med, 2012, 10(4): 295-298.
    [24]
    Searels JM, Keen KD, Horton JL, Clarke HD, Ward JR. Comparing ginsenoside production in leaves and roots of wild American ginseng (Panax quinquefolius)[J]. Am J Plant Sci, 2013, 4(6): 1252-1259.
    [25]
    Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, Chen XY. Transcriptional regulation of plant se-condary metabolism[J]. J Integr Plant Biol, 2012, 54(10): 703-712.
    [26]
    De Luca V, Salim V, Thamm A, Masada SA, Yu F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation[J]. Curr Opin Plant Biol, 2014, 19: 35-42.
    [27]
    王凌健, 方欣, 杨长青, 李建戌, 陈晓亚. 植物萜类次生代谢及其调控[J]. 中国科学: 生命科学, 2013, 43(12): 1030-1046.
    [28]
    Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, Van Der Krol S, Lugan R, Llc T, Verpoortel R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. The seco-iridoid pathway from Catharanthus roseus[J]. Nat Commun, 2014, 5(7): 3606.
    [29]
    Beninger CW, Cloutier RR, Monteiro MA, Grodzinski B. The distribution of two major iridoids in different organs of Antirrhinum majus L. at selected stages of development[J]. J Chem Ecol, 2007, 33(4): 731-747.
    [30]
    Hua WP, Zheng P, He YH, Cui LJ, Kong WW, Wang ZZ. An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq[J]. Mol Biol Rep, 2014, 41(7): 4817-4852.
    [31]
    Struwe L, Albert VA, Gentianaceca Systematics and Natural History[M]. New York: Cambridge University Press, 2002: 573-574.
    [32]
    Ramakrishna A, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants[J]. Plant Signal Behav, 2011, 6(11): 1720-1731.
    [33]
    Delaroza F, Rakocevic M, Malta GB, Bruns RE, Scarminio IS. Spectroscopic and chromatographic fingerprint analysis of composition variations in Coffea arabica leaves subject to different light conditions and plant phenophases[J]. J Braz Chem Soc, 2014, 25(11): 1929-1938.
    [34]
    Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress[J]. New Phytol, 2004, 163(3): 547-561.
    [35]
    Takahashi H, Yamada H, Yoshida C, Imamura T. Modification of light quality improves the growth and medicinal quality of clonal plantlets derived from the herbal plant Gentiana[J]. Plant Biote-chnol, 2012, 29(3): 315-318.
    [36]
    Sardans J, Penuelas J, Rivas-Ubach A. Ecological metabolomics: overview of current developments and future challenges[J]. Chemoecology, 2011, 21(4): 191-225.
    [37]
    Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang RX, Hedley PE, Taylor MA. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature[J]. Plant Cell Environ, 2014, 37(2), 439-450.
    [38]
    Król A, Amarowicz R, Weidner S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress[J]. Acta Physiol Plant, 2014, 36(6), 1491-1499.
    [39]
    段文军, 王金叶, 李海防. 华南退化生态系统三种典型生态恢复模式的小气候效应研究[J]. 生态环境学报, 2014, 23(6): 911-916.
    [40]
    李强, 杜思邈, 张忠亮, 吕春明, 周永全, 赵燕, 张宁. 中药指纹图谱技术进展及未来发展方向展望[J]. 中草药, 2013, 44(22): 3095-3103.
    [41]
    Song XY, Jin L, Shi YP, Li YD, Chen J. Multiva-riate statistical analysis based on a chromatogra-phic fingerprint for the evaluation of important environmental factors that affect the quality of Angelica sinensis[J]. Anal Methods, 2014, 6(20): 8268-8276.
    [42]
    Khairudin K, Sukiran NA, Goh HH, Baharum SN, Noor NM. Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy[J]. Metabolomics, 2014, 10(2): 203-211.
  • Cited by

    Periodical cited type(6)

    1. 朱启轩,李晓颖,武军凯,葛航,陈俊伟,徐红霞. 枇杷F_1代果实性状遗传倾向分析及综合品质评价. 园艺学报. 2024(06): 1201-1215 .
    2. 张丽,屈佳. 陕西省区域猕猴桃特色产业发展路径规划研究. 特产研究. 2024(04): 181-185 .
    3. 贺迪,钟彩虹,朱佳慧,潘慧,李文艺,杨洁,黄跃,刘普,李黎. 山梨与中华猕猴桃种间杂交群体的抗病性评价及抗病机制的研究. 果树学报. 2024(11): 2235-2249 .
    4. 李娇,安秀红,邵建柱,李武兴,田义. 晚白海棠×华月苹果杂交种实生苗若干性状的遗传分析. 江苏农业科学. 2023(13): 169-175 .
    5. 方周,江锡兵,龚榜初,赖俊声,吴剑,李煜. 锥栗杂交F_1代果实表型性状变异分析及单株综合选择. 林业科学研究. 2023(05): 21-31 .
    6. 郭鑫淼,袁迎春,胡观兴,姜毅,李楠昕,龚文芳. 油茶杂交子代花器官性状的遗传分析. 植物遗传资源学报. 2023(06): 1649-1658 .

    Other cited types(4)

Catalog

    Article views (1138) PDF downloads (1559) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return