Advance Search
XIN Gui-Liang, ZHENG Jun-Ming, YE Zhi-Yong, ZHANG Wan-Chao, DENG Chuan-Yuan. Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6): 792-800. DOI: 10.11913/PSJ.2095-0837.2015.60792
Citation: XIN Gui-Liang, ZHENG Jun-Ming, YE Zhi-Yong, ZHANG Wan-Chao, DENG Chuan-Yuan. Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.[J]. Plant Science Journal, 2015, 33(6): 792-800. DOI: 10.11913/PSJ.2095-0837.2015.60792

Ecological Anatomical Characteristics of Secondary Xylem in Kandelia obovata Sheue et al.

More Information
  • Received Date: April 21, 2015
  • Published Date: December 27, 2015
  • Five soil physicochemical indexes, including edaphic pH, edaphic salinity and soil nutrient values, were determined in seven Kandelia obovata populations located in the Futian Mangrove Nature Reserve of Shenzhen Bay. The morphological features of the secondary xylem of K. obovata populations corresponding to soil sampling, which represented different habitats, were surveyed by light microscopy (LM), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM). Variations in the quantitative wood anatomical features of the seven K. obovata populations were assessed in detail. Relationships between soil physicochemical variables and quantitative wood anatomical features were analyzed statistically. Some specialized wood structures in K. obovata growing in different habitats were observed, suggesting that they function to safely conduct water under high negative pressure and are adaptive to intertidal habitats. Their characteristics included some fibriform vessel elements and a few vasicentric tracheids; abundant micromorphological structures such as vestures and helical structures on vessel walls, and vestured pits and perforated plates. The relationship between soil physicochemical factors and quantitative anatomical features by stepwise regression analysis indicated that larger-scale vessel elements occurred with increasing soil Na + content and total salt quantity. Large scale vessel elements improved the water transportation efficiency, but depressed water transportation safety. Presumably, other wood anatomical features might ensure safe mechanisms for K. obovata under conditions of higher soil ion content and larger scale vessel elements, which both result in lower water transportation safety.
  • [1]
    费松林, 方精云, 樊拥军, 赵坤, 刘雪皎, 崔克明. 贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J]. 植物学报, 1999, 41(9): 1002-1009.
    [2]
    史刚荣, 程雪莲, 刘蕾, 马成仓. 扁担木叶片和次生木质部解剖和水分生理特征的可塑性[J]. 应用生态学报, 2006, 17(10): 1801- 1806.
    [3]
    史刚荣, 刘蕾. 淮北相山三种群落中优势树种次生木质部的解剖学特征[J]. 云南植物研究, 2006, 28(4): 363-370.
    [4]
    Carlquist S. Comparative Wood Anatomy[M]. 2nd ed. Berlin: Springer Verlag, 2001.
    [5]
    Liu JL, Noshiro S. Lack of latitudinal trends in wood anatomy of Dodonaea viscosa (Sapinda-ceae), a species with a worldwide distribution[J]. Am J Bot, 2003, 90(4): 532-539.
    [6]
    Stevenson JF,Mauseth JD. Effect of environment on vessel characters in cactus wood[J]. Int J Plant Sci, 2004, 165(3): 347-357.
    [7]
    Verheyden A, Kairo JG, Beeckman H, Koedam N. Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucro-nata[J]. Ann Bot, 2004, 94(1): 59-66.
    [8]
    Verheyden A, Ridder F, Schmitz N, Beeckman H, Koedam N. High-resolution resolution time series of vessel density in Kenyan mangrove trees reveal a link with climate[J]. New Phytol, 2005, 167(2): 425-435.
    [9]
    Schmitz N, Verhcyden A, Bccckman H, Kairo JG, Koedam N. Influence of a salinity gradient on the vessel characters of the mangrove species Rhizophora mucronata[J]. Ann Bot,2006, 98(6): 1321-1330.
    [10]
    Schmitz N, Robert EMR,Verheyden A, Kairo JG, Beeckman H, Koedam N. A patchy growth via successive and simultaneous cambia: key to success of the most widespread mangrove species Avicennia marina?[J]. Ann Bot, 2008, 101(1): 49-58.
    [11]
    Sun Q, Lin P. Wood structure of Aegiceras corni-culatum and its ecological adaptations to salinities[J]. Hydrobiologia, 1997, 352(1-3): 61-66.
    [12]
    邓传远, 林鹏, 郭素枝. 海桑属红树植物次生木质部解剖特征及其对潮间带生境的适应[J]. 植物生态学报, 2004, 28(3): 392-399.
    [13]
    邓传远,林鹏,郭素枝. 榄李属(Lumnitzera)红树植物的木材解剖学研究[J]. 厦门大学学报: 自然科学版, 2004, 43(3): 406-411.
    [14]
    Jansonnius HH. The vessel in the wood of Javan mangrove trees[J]. BLUMEA, 1950, 6(2): 465-469.
    [15]
    刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996.
    [16]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
    [17]
    Miksche JP. Botanical Microtechnique Cytoche-mistry[M]. Iowa: The Iowa State University Press, 1976:54-129.
    [18]
    IAWA Committee. IAWA list of microscopic features for hardwood identification[J]. IAWA New Series, 1989, 10(3): 219-332.
    [19]
    Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR. Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior[J]. J Bot, 1998, 76(7): 1180-1187.
    [20]
    邓传远, 辛桂亮, 张万超, 郭素枝, 薛秋华, 赖钟雄, 叶露莹. 红树族植物次生木质部附物纹孔的电镜观测[J]. 植物学报, 2015, 50(1): 90-99.
    [21]
    Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits[J]. J Exp Bot, 2004, 55(402): 1569-1575.
    [22]
    Jansen S, Baas P, Gasson P, Smets E. Vestured pits: Do they promote safer water transport?[J] Int J Plant Sci, 2003, 164(3): 405-413.
    [23]
    Jansen S, Baas P, Gasson P, Lens F, Smets E. Variation in xylem structure from tropics to tundra: Evidence from vestured pits[J]. PNAS, 2004, 101(23): 8833-8837.
    [24]
    Kohonen MM, Helland A. On the function of wall sculpturing in xylem conduits[J]. J Bionic Eng, 2009, 6(4): 324-329.
    [25]
    Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap[M]. 2nd ed. Berlin: Springer, 2002.
    [26]
    Biles CL, Abeles FB. Xylem sap proteins[J]. Plant Physiol, 1991, 96(2): 597-601.
    [27]
    Zimmermann U, Zhu JJ, Meinzer F, Goldstein G, Schneider H, Zimmermann G, Benkert R, Thürmer F, Melcher P, Webb D. High molecular weight organic compounds in the xylem sap of mangroves: implications for long-distance water transport[J]. Botanica Acta, 1994, 107(4): 218-220.
    [28]
    Zimmermann U, Wanger HJ, Heidecker M, Mi-mietz S, Schneider H, Szimtenings M, Haase A, MitlÖhner R, Kruck W, Hoffmann R, KÖnig W. Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water[J]. Trees, 2002, 16(2-3): 100-111.
    [29]
    Salleo S, Trifilo P, Nardini A, Lo Gullo MA. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair?[J]. Funct Plant Biol, 2009, 36(9): 815-825.
    [30]
    Zwieniecki MA, Holbrook NM. Confronting Max-well's demon: Biophysics of xylem embolism repair[J]. Trends Plant Sci, 2009, 14(10): 530-534.
    [31]
    Nardini A, Lo Gullo MA, Salleo S. Refilling embolized xylem conduits: Is it a matter of phloem unloading?[J]. Plant Sci, 2011, 180(4): 604-611.
    [32]
    Secchi F, Zwieniecki MA. Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling[J]. Plant Cell Environ, 2011, 34(3): 514-524.
    [33]
    Fonti P, Von AG, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings[J]. New Phytol, 2010, 185(1): 42-53.
  • Cited by

    Periodical cited type(2)

    1. 孙杰,何欣,王东博,叶媛丽,朱晓霞. 苔藓植物光合作用的研究进展. 现代园艺. 2022(15): 58-59+62 .
    2. 詹瑾,种培芳,李毅,谢惠敏,张玉洁,周鹏飞. 不同灌水量对核桃苗木叶绿素荧光日变化的影响. 甘肃农业大学学报. 2019(06): 108-116 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return