Advance Search
PAN Fan, SHI Tao-Xiong, CHEN Qi-Jiao, MENG Zi-Ye, LIANG Cheng-Gang, CHEN Qing-Fu. Variation in Major Agronomic Traits and its Contribution to Grain Weight per Plant in Tartary Buckwheat Germplasm[J]. Plant Science Journal, 2015, 33(6): 829-839. DOI: 10.11913/PSJ.2095-0837.2015.60829
Citation: PAN Fan, SHI Tao-Xiong, CHEN Qi-Jiao, MENG Zi-Ye, LIANG Cheng-Gang, CHEN Qing-Fu. Variation in Major Agronomic Traits and its Contribution to Grain Weight per Plant in Tartary Buckwheat Germplasm[J]. Plant Science Journal, 2015, 33(6): 829-839. DOI: 10.11913/PSJ.2095-0837.2015.60829

Variation in Major Agronomic Traits and its Contribution to Grain Weight per Plant in Tartary Buckwheat Germplasm

More Information
  • Received Date: July 17, 2015
  • Published Date: December 27, 2015
  • To breed high-yield buckwheat varieties with thin shells, the agronomic traits of 180 tartary buckwheat accessions were evaluated using statistical methods such as simple and partial correlation analysis and path analysis. Results showed that the variation coefficients of eight main agronomic traits ranged from 8.10% to 39.40%. Simple correlation analysis indicated that grain weight per plant (GW) was positively correlated with grain number per plant (GN) and number of primary branches (PBN). Partial correlation analysis showed that GW was positively correlated with GN and 1000-grain weight (TGW). Multiple stepwise regression and path analysis indicated that GN and TGW were the main factors affecting GW. Cluster analysis showed that the 180 tartary buckwheat accessions were classified into five groups, with 47 germplasm resources, primarily found in group Ⅲ, exhibiting excellent agronomic traits, including good stem branching capacity and high GN, GW and RGY. Therefore, 47 germplasm resources in group Ⅲ are suitable as tartary buckwheat breeding material and provide a basis for shell breeding with increased rice grain weight per plant (RGY) and milled rice rate (MR).
  • [1]
    林汝法. 中国荞麦[M]. 北京: 中国农业出版社, 1994.
    [2]
    杨克理. 我国荞麦种质资源研究现状与展望[J]. 作物品种资源, 1995(3): 11-13.
    [3]
    陈庆富. 荞麦属植物科学[M]. 北京: 科学出版社, 2012.
    [4]
    时政, 黄凯丰, 陈庆富. 贵州不同生态区苦荞产量性状形成的初步分析[J]. 四川大学学报, 2011, 48(5): 1221-1226.
    [5]
    杨明君, 杨媛, 陈友清, 杨如达, 郭庆瑞. 苦荞麦主要经济性状遗传参数研究[J]. 内蒙古农业科技, 2005(5): 19-20.
    [6]
    唐国顺, 毛建昌. 大巴山区荞麦种质资源主要农艺性状与单株产量的通径分析[J]. 陕西农业科学, 1996(4): 10-11.
    [7]
    Senthilkumaran R, Bisht IS, Bhat KV, Rana JC. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas[J]. Genet Resour Crop Evol, 2008, 55: 287-302.
    [8]
    卢明俊, 张宏伟, 张永红, 佟伟军, 赵英伟, 山素君, 刘海英. 食用荞麦与血糖和糖尿病关系流行病学研究[J]. 现代预防医学, 2002(3): 326-328.
    [9]
    田秀红, 任涛. 苦荞麦的营养保健作用于开发利用[J]. 中国食物与营养, 2007(10): 44-46.
    [10]
    Zhou YM, Wang H, Cui LL, Zhou XL, Tang W, Song XL. Evolution of nutrient ingredients in tartary buckwheat seeds during germination[J]. Food Chem, 2015, 186: 244-248.
    [11]
    Zhao XY, Xu YZ, Wang JX, Sun M, Peng LX, Liu Y. Detection of the purity of tartary buckwheat powder based on infrared spectrum[J]. Med Plant, 2013, 4(6): 67-71.
    [12]
    李秀莲, 林汝法, 乔爱花. 苦荞主要性状的相关及通经分析[J]. 国外农学-杂粮作物, 1997(2): 25-27.
    [13]
    宋江峰, 李大婧, 刘春泉, 刘玉花. 甜糯玉米软罐头主要挥发性物质主成分分析和聚类分析[J]. 中国农业科学, 2010, 43(10): 2122-2131.
    [14]
    李月, 石桃雄, 黄凯丰, 汤晓辛, 何娟, 简永, 陈庆富. 苦荞生态因子及农艺性状与产量的相关性分析[J]. 西南农业学报, 2013, 26(1): 35-41.
    [15]
    杨明君, 杨媛, 郭忠贤, 杨芳. 旱作苦荞麦籽粒产量与主要性状的相关分析[J]. 内蒙古农业科技, 2010(2): 49-50.
    [16]
    汪灿, 胡丹, 杨浩, 阮仁武, 袁晓辉, 易泽林, 宋志成, 赵丹. 苦荞主要农艺性状与产量关系的多重分析[J]. 作物杂志, 2013(06): 18-22.
    [17]
    杨玉霞, 吴卫, 郑有良, 王俊, 李建, 邬昌禄. 苦荞主要农艺性状与单株籽粒产量的相关和通径分析[J]. 安徽农业科学, 2008, 36(16): 6719-6721, 6746.
    [18]
    高金峰, 张慧成, 高小丽, 卓嘎, 柴岩, 李瑞国, 冯佰利. 西藏苦荞种质资源主要农艺性状分析[J]. 河北农业大学学报, 2008, 2(31): 1-5, 20.
  • Related Articles

    [1]Jia Xiande, Lü Haiying, Wu Limei, Yang Yinan, Huang Renhao, Wang Hao, Niu Xin. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal, 2024, 42(2): 150-159. DOI: 10.11913/PSJ.2095-0837.23157
    [2]Liu Xiong-Sheng, Xiao Yu-Fei, Wang Yong, Huang Rong-Lin, Jiang Ying, Liu Fei, Jiang Yi. Anatomical structures of vegetative organs of Keteleeria fortunei (Murr.)Carr.var. cyclolepis (Flous) Silba and its ecological adaptability[J]. Plant Science Journal, 2020, 38(1): 39-46. DOI: 10.11913/PSJ.2095-0837.2020.10039
    [3]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [4]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [5]Li Na, Guo Xue-Min, Li Ming, Bai Lan. Comparison of leaf anatomical structures between female and male Broussonetia papyrifera(L.) Vent.[J]. Plant Science Journal, 2017, 35(2): 164-170. DOI: 10.11913/PSJ.2095-0837.2017.20164
    [6]WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175
    [7]SHEN Shi-Kang, ZHANG Xin-Jun, WU Fu-Qin, YANG Guan-Song, WANG Yue-Hua, SUN Wei-Bang, LIN Ru-Tao. Study on the Anatomical Structures of Rhododendron protistum var. giganteum with an Extremely Small Population[J]. Plant Science Journal, 2016, 34(1): 1-8. DOI: 10.11913/PSJ.2095-0837.2016.10001
    [8]YANG Zhi-Jian, FENG Jin-Ling, CHEN Hui. Study on the Anatomical Structures in Development of the Nurse Seed Grafted Union of Camellia oleifera[J]. Plant Science Journal, 2013, 31(3): 313-320. DOI: 10.3724/SP.J.1142.2013.30313
    [9]LU Chang, WANG Fang, ZHANG Xiao-Ping. Leaf Comparation on Anatomical Structure and Epidermal Characteristics of Pteroceltis tatarinowii Maxim. in Different Areas[J]. Plant Science Journal, 2012, 30(4): 337-351. DOI: 10.3724/SP.J.1142.2012.40337
    [10]TAO Yong, JIANG Ming-Xi. Study on Anatomical Structure Adaptation of Stem of Alternanthera philoxeroides (Mart.) Griseb to Various Water Condition[J]. Plant Science Journal, 2004, 22(1): 65-71.
  • Cited by

    Periodical cited type(10)

    1. 林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 .
    2. 林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 .
    3. 艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 .
    4. 李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 .
    5. 祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 .
    6. 古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 .
    7. 张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 .
    8. 周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 . 本站查看
    9. 杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 .
    10. 赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 .

    Other cited types(15)

Catalog

    Article views (1323) PDF downloads (1222) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return