Advance Search
PAN Fan, SHI Tao-Xiong, CHEN Qi-Jiao, MENG Zi-Ye, LIANG Cheng-Gang, CHEN Qing-Fu. Variation in Major Agronomic Traits and its Contribution to Grain Weight per Plant in Tartary Buckwheat Germplasm[J]. Plant Science Journal, 2015, 33(6): 829-839. DOI: 10.11913/PSJ.2095-0837.2015.60829
Citation: PAN Fan, SHI Tao-Xiong, CHEN Qi-Jiao, MENG Zi-Ye, LIANG Cheng-Gang, CHEN Qing-Fu. Variation in Major Agronomic Traits and its Contribution to Grain Weight per Plant in Tartary Buckwheat Germplasm[J]. Plant Science Journal, 2015, 33(6): 829-839. DOI: 10.11913/PSJ.2095-0837.2015.60829

Variation in Major Agronomic Traits and its Contribution to Grain Weight per Plant in Tartary Buckwheat Germplasm

More Information
  • Received Date: July 17, 2015
  • Published Date: December 27, 2015
  • To breed high-yield buckwheat varieties with thin shells, the agronomic traits of 180 tartary buckwheat accessions were evaluated using statistical methods such as simple and partial correlation analysis and path analysis. Results showed that the variation coefficients of eight main agronomic traits ranged from 8.10% to 39.40%. Simple correlation analysis indicated that grain weight per plant (GW) was positively correlated with grain number per plant (GN) and number of primary branches (PBN). Partial correlation analysis showed that GW was positively correlated with GN and 1000-grain weight (TGW). Multiple stepwise regression and path analysis indicated that GN and TGW were the main factors affecting GW. Cluster analysis showed that the 180 tartary buckwheat accessions were classified into five groups, with 47 germplasm resources, primarily found in group Ⅲ, exhibiting excellent agronomic traits, including good stem branching capacity and high GN, GW and RGY. Therefore, 47 germplasm resources in group Ⅲ are suitable as tartary buckwheat breeding material and provide a basis for shell breeding with increased rice grain weight per plant (RGY) and milled rice rate (MR).
  • [1]
    林汝法. 中国荞麦[M]. 北京: 中国农业出版社, 1994.
    [2]
    杨克理. 我国荞麦种质资源研究现状与展望[J]. 作物品种资源, 1995(3): 11-13.
    [3]
    陈庆富. 荞麦属植物科学[M]. 北京: 科学出版社, 2012.
    [4]
    时政, 黄凯丰, 陈庆富. 贵州不同生态区苦荞产量性状形成的初步分析[J]. 四川大学学报, 2011, 48(5): 1221-1226.
    [5]
    杨明君, 杨媛, 陈友清, 杨如达, 郭庆瑞. 苦荞麦主要经济性状遗传参数研究[J]. 内蒙古农业科技, 2005(5): 19-20.
    [6]
    唐国顺, 毛建昌. 大巴山区荞麦种质资源主要农艺性状与单株产量的通径分析[J]. 陕西农业科学, 1996(4): 10-11.
    [7]
    Senthilkumaran R, Bisht IS, Bhat KV, Rana JC. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas[J]. Genet Resour Crop Evol, 2008, 55: 287-302.
    [8]
    卢明俊, 张宏伟, 张永红, 佟伟军, 赵英伟, 山素君, 刘海英. 食用荞麦与血糖和糖尿病关系流行病学研究[J]. 现代预防医学, 2002(3): 326-328.
    [9]
    田秀红, 任涛. 苦荞麦的营养保健作用于开发利用[J]. 中国食物与营养, 2007(10): 44-46.
    [10]
    Zhou YM, Wang H, Cui LL, Zhou XL, Tang W, Song XL. Evolution of nutrient ingredients in tartary buckwheat seeds during germination[J]. Food Chem, 2015, 186: 244-248.
    [11]
    Zhao XY, Xu YZ, Wang JX, Sun M, Peng LX, Liu Y. Detection of the purity of tartary buckwheat powder based on infrared spectrum[J]. Med Plant, 2013, 4(6): 67-71.
    [12]
    李秀莲, 林汝法, 乔爱花. 苦荞主要性状的相关及通经分析[J]. 国外农学-杂粮作物, 1997(2): 25-27.
    [13]
    宋江峰, 李大婧, 刘春泉, 刘玉花. 甜糯玉米软罐头主要挥发性物质主成分分析和聚类分析[J]. 中国农业科学, 2010, 43(10): 2122-2131.
    [14]
    李月, 石桃雄, 黄凯丰, 汤晓辛, 何娟, 简永, 陈庆富. 苦荞生态因子及农艺性状与产量的相关性分析[J]. 西南农业学报, 2013, 26(1): 35-41.
    [15]
    杨明君, 杨媛, 郭忠贤, 杨芳. 旱作苦荞麦籽粒产量与主要性状的相关分析[J]. 内蒙古农业科技, 2010(2): 49-50.
    [16]
    汪灿, 胡丹, 杨浩, 阮仁武, 袁晓辉, 易泽林, 宋志成, 赵丹. 苦荞主要农艺性状与产量关系的多重分析[J]. 作物杂志, 2013(06): 18-22.
    [17]
    杨玉霞, 吴卫, 郑有良, 王俊, 李建, 邬昌禄. 苦荞主要农艺性状与单株籽粒产量的相关和通径分析[J]. 安徽农业科学, 2008, 36(16): 6719-6721, 6746.
    [18]
    高金峰, 张慧成, 高小丽, 卓嘎, 柴岩, 李瑞国, 冯佰利. 西藏苦荞种质资源主要农艺性状分析[J]. 河北农业大学学报, 2008, 2(31): 1-5, 20.
  • Related Articles

    [1]Wang Qin, Yang Da, Peng Xiaorong, Ke Yan, Zhang Yunbing, Zhang Jiaolin. Studies on leaf functional traits in key protected plants of Myristicaceae[J]. Plant Science Journal, 2024, 42(4): 519-532. DOI: 10.11913/PSJ.2095-0837.23289
    [2]Song Shuaishuai, Wu Hao, Lü Linyu, Xiao Zhiqiang, Yang Teng, Shi Hongwen, Wei Xinzeng. Geographic patterns of leaf functional traits and environmental drivers of national key protected wild plant Davidia involucrata Baillon[J]. Plant Science Journal, 2024, 42(2): 160-169. DOI: 10.11913/PSJ.2095-0837.23112
    [3]Yuan Xiao-Chu, Zhang Wan-Wan, Wang Fa-Guo, Wang Yong-Qi, Guo Ya-Nan, Xu Lei. Current status and conservation strategies of wetland plants in Guangdong Province, China[J]. Plant Science Journal, 2018, 36(2): 211-220. DOI: 10.11913/PSJ.2095-0837.2018.20211
    [4]ZHOU Wen-Ping, WANG Huai-Qin, GUO Xiao-Rong, YANG Xin-Bing, HUA Wen-Ping, CAO Xiao-Yan. Cloning and Expression Analysis of SmMYC2, a bHLH Transcription Factor Gene from Salvia miltiorrhiza Bunge[J]. Plant Science Journal, 2016, 34(2): 246-254. DOI: 10.11913/PSJ.2095-0837.2016.20246
    [5]WU Jian-Guo. Potential Effects of Climate Change on the Distribution of Seven Protected Plants in China[J]. Plant Science Journal, 2010, 28(4): 437-452.
    [6]ZANG Min, BIAN Xin-Min. A Study on the Rare and Threatened Plants in Mt. Sanqingshan,Jiangxi Province[J]. Plant Science Journal, 2003, 21(6): 515-520.
    [7]Xie Guowen, Zhou Zhide, Nong Zhilin. STUDIES ON THE BIODIVERSITY AND PROTECTION OF ENDEMIC GENERA OF CHINESE SEED PLANTS IN JIANGXI PROVINCE[J]. Plant Science Journal, 1996, 14(4): 294-300.
    [8]Wang Shiyun, Xu Huizhu, Zhao Zien, Peng Fusong, Wan Caigan. A STUDY ON THE CONSERVATION OF THE RARE AND THREATENED PLANTS IN HUBEI AND ITS SURROUNDINGS[J]. Plant Science Journal, 1995, 13(4): 354-368.
    [9]Deng Youping, Chen Xingqiu. STUDY ON THE PTERIDOPHYTES IN HOUHE NATURAL PROTECTIVE REGIOH[J]. Plant Science Journal, 1994, 12(2): 129-136.
    [10]Zheng Chaozong. GEOGRAPHIC DISTRIBUTION OF THE RARE, ENDANGERED AND PROTECTED PLANTS IN ZHEJIANG AND THEIR CHARACTERISTICS OF FLORA[J]. Plant Science Journal, 1990, 8(3): 235-242.

Catalog

    Article views (1326) PDF downloads (1222) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return