Advance Search
HU Zeng-Hui, JIA Qing-Qing, ZHENG Jian, YANG Liu, LENG Ping-Sheng. Studies on the Physiological Response of Sedum hybridum Cutting Seedlings to Drought Stress[J]. Plant Science Journal, 2015, 33(6): 840-846. DOI: 10.11913/PSJ.2095-0837.2015.60840
Citation: HU Zeng-Hui, JIA Qing-Qing, ZHENG Jian, YANG Liu, LENG Ping-Sheng. Studies on the Physiological Response of Sedum hybridum Cutting Seedlings to Drought Stress[J]. Plant Science Journal, 2015, 33(6): 840-846. DOI: 10.11913/PSJ.2095-0837.2015.60840

Studies on the Physiological Response of Sedum hybridum Cutting Seedlings to Drought Stress

More Information
  • Received Date: May 22, 2015
  • Published Date: December 27, 2015
  • Sedum hybridum presents high drought resistance. In this study, the physiological indexes of S. hybridum cutting seedlings were investigated in the 60 days of drought stress, including leaf relative water content, malondialdehyde (MDA) content, cell damage rate, photosynthetic parameters (net photosynthetic rate, stomatal conductance and transpiration rate), fluorescence parameters (Fv/Fm, qP, PHiPS2), malic acid content and phosphoeno-lpyruvate carboxylase (PEPCase) activity. Results showed that drought stress led to a decrease in leaf relative water content, photosynthetic parameters and fluorescence parameters, and an increase in cell damage rate and MDA content. Within the first 30 days of drought stress, the physiological indexes exhibited small amplitude variation. After 40 days of stress, the variation amplitude of physiological indexes increased rapidly. In the following experiments, malic acid content and PEPCase activity increased significantly, demonstrating that the C3 pathway was weakened and crassulacean acid metabolism (CAM) pathway was stimulated, which was involved in the stress response of S. hybridum to enhance drought resistance. After 60 days, stress exceeded the tolerance range of S. hybridum plants, leading to serious damage and gradual death. Our results showed that S.hybridum cuttings exhibited strong drought tolerance physiologically, and possessed the characteristics of a facultative CAM plant. Activation of the CAM pathway enhanced drought tolerance, which was an important mechanism of S.hybridum.
  • [1]
    杨丽娟. 重庆市耐旱园林植物的调查筛选及应用研究[D]. 重庆: 西南大学, 2009.
    [2]
    庄陆婷, 王思麒, 李彬, 罗言云. 耐旱植物在节水型绿地建设中的应用研究[J]. 北方园艺, 2012(5): 105-108.
    [3]
    马进. 3种野生景天对逆境胁迫生理响应及园林应用研究[D]. 南京: 南京林业大学, 2009.
    [4]
    王倩, 冷平生, 关雪莲. 九种景天植物在越冬期间生理生化指标的变化[J]. 北方园艺, 2010(19): 114-117.
    [5]
    王倩, 关雪莲, 胡增辉, 卢存福, 冷平生. 3种景天植物叶片结构特征与抗寒性的关系[J]. 应用与环境生物学报, 2013, 19(2): 280-285.
    [6]
    宋海鹏, 刘君, 李秀玲, 赵海明, 杨志民. 干旱胁迫对5种景天属植物生理指标的影响[J]. 草业科学, 2010, 27(1): 11-15.
    [7]
    薛乃雯, 冷平生, 孙譞, 王倩, 何敬房. 土壤干旱胁迫对8种景天属植物生长与生理生化指标的影响[J]. 中国农学通报, 2010, 26(13): 302-307.
    [8]
    李文杰. 景天酸代谢(CAM)和CAM植物[J]. 生命的化学, 1991, 11(1): 34.
    [9]
    苏丹. 费菜和长药八宝的耐旱性研究[D]. 长春: 吉林农业大学, 2007.
    [10]
    周伟伟, 王雁, 杜静. 干旱胁迫对景天属植物生理生化特性的影响[J]. 林业科学研究, 2009, 22(6): 829-834.
    [11]
    林植芳, 彭长连, 林桂珠. 兼性CAM植物长叶景天叶片在C3和CAM型时的光氧化作用[J]. 植物学报, 2003, 45(3): 301-306.
    [12]
    陈成彬. 德国景天园林引种及栽培应用的研究[J]. 园林科技信息, 1991(1): 8-9.
    [13]
    陈先荣, 王小平, 李增萍, 刘岱. 德国景天的特征特性与扩繁技术[J]. 甘肃农业科技, 2005(3): 45-47.
    [14]
    金江群, 郭泉水, 朱莉, 许格希, 刘建锋, 裴顺祥. 干旱和复水对崖柏光合特性及水分利用效率的影响[J]. 植物科学学报, 2012, 30(6): 599-610.
    [15]
    张乐华, 周广, 孙宝腾, 李晓花, 王书胜, 单文. 高温胁迫对两种常绿杜鹃亚属植物幼苗生理生化特性的影响[J]. 植物科学学报, 2011, 29(3): 362-369.
    [16]
    张治安, 陈展宇. 植物生理学实验技术[M]. 长春: 吉林大学出版社, 2008.
    [17]
    任建武, 王雁, 彭镇华, 胡青. 3种石斛叶片苹果酸含量日变化动态研究[J]. 江西农业大学学报, 2010, 32(3): 547-552.
    [18]
    郭瑛, 肖朝萍, 王红, 黄天宝. 高效液相色谱法测定乌梅有机酸[J]. 分析化学, 2004, 12(32): 1624-1626.
    [19]
    Nievola CC, Kraus JE, Freschi L, Souza BM, Mercier H. Temperature determines the occurrence of cam or C3 photosynthesis in pineapple plantlets grown in vitro[J]. In Vitro Cell Dev-Pl, 2005, 41(6): 832-837.
    [20]
    李云霞, 张建生, 吴永华, 张梅花, 杨永东. 5种景天科地被植物抗旱性比较研究[J]. 干旱区资源与环境, 2010, 24(2): 183-186.
    [21]
    Herrera A. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?[J]. Ann Bot, 2009, 103(4): 645-653.
    [22]
    Kluge M, Ting IP. Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation[M]. New York: Springer-Verlag, 1978. 1-12.
    [23]
    Lüttge U. Ecophysiology of crassulacean acid metabolism (CAM)[J]. Ann Bot, 2004, 93(6): 629-652.
    [24]
    Winter K, Garcia M, Holtum JAM. Drought-stress-induced up-regulation of CAM in seedlings of a tropical cactus, Opuntia elatior, operating predominantly in the C3 mode[J]. J Exp Bot, 2011, 62(11): 4037-4042.
    [25]
    唐犁, 施教耐. 水分胁迫对露花磷酸烯醇式丙酮酸羧化酶表达水平及特性的影响[J]. 植物生理学报, 1997, 23(2): 192-198.
    [26]
    Saruki S, Cushman JC, Agarie S. Crassulacean acid metabolism may alleviate production of reactive oxygen species in a facultative CAM plant, the common ice plant Mesembryanthemum crystallinum L.[J]. Plant Prod Sci, 2010, 13(3): 256-260.
    [27]
    Piepenbrock M, Schmitt JM. Environmental control of phosphoenolpyruvate carboxylase induction in mature Mesembryanthemum crystallinum L.[J]. Plant Physiol, 1991, 97(3): 998-1003.
  • Related Articles

    [1]Liu Shujuan, Ouyang Xueling, Yang Aihong, Liu Tengyun, Liu Lipan, Zhou Hua. Growth and physiological response of Cinnamomum camphora (L.) Presl to copper stress and analysis of copper enrichment and transport characteristics[J]. Plant Science Journal, 2024, 42(2): 232-241. DOI: 10.11913/PSJ.2095-0837.23152
    [2]Aili·Yilinuer, Chen Xiao-Nan, Gao Wen-Li, Wang Hai-Ou, Dawuti·Maigepiretiguli, Ma Xiao-Dong. Physiological responses of arbuscular mycorrhizal fungus- Tamarix ramosissima Ledeb. seedling symbionts to drought stress[J]. Plant Science Journal, 2022, 40(5): 724-732. DOI: 10.11913/PSJ.2095-0837.2022.50724
    [3]Ling Yu, Long Jiang-Yu, Xiang Yuan-Hang, Fan Ji-Biao. Effects of cadmium stress on physiological characteristics of resilience in Festuca arundinacea L. and Agrostis stolonifera L.[J]. Plant Science Journal, 2022, 40(5): 705-713. DOI: 10.11913/PSJ.2095-0837.2022.50705
    [4]SUN Xiao-yan, WU Zhao-xiang, GUO Xiong-chang, WU Yi-yi, LI Yan-qiang. Differences in responses of Liriodendron chinense (Hemsl.)Sarg. seedlings from different provenances to cadmium stress and cadmium tolerance evaluation[J]. Plant Science Journal, 2021, 39(6): 663-671. DOI: 10.11913/PSJ.2095-0837.2021.60663
    [5]Lu Wei-Wei, Liu Xing. Cloning of the phosphoenolpyruvate carboxylase gene (PEPC) from Isoetes shangrilaensis X. Liu and construction of its expression vector[J]. Plant Science Journal, 2020, 38(6): 812-819. DOI: 10.11913/PSJ.2095-0837.2020.60812
    [6]Kang Ya-Chao, Liu Ping, Wang Ling-Hui, Mo Zhe, Qin Li-Ting, Teng Wei-Chao. Physiological responses of Erythrophleum fordii seedlings under SNP-AlCl3 interaction[J]. Plant Science Journal, 2019, 37(4): 521-529. DOI: 10.11913/PSJ.2095-0837.2019.40521
    [7]Dang Cheng-Qiang, Li Zong-Feng, Chen Miao, Gao Ting, Huang Hui-Min, Liu Jin-Chun, Tao Jian-Ping. Physiological and biochemical characteristics of epilithic moss Homomallium simlaense (Mitt.) Broth. Mitt under high temperature and drought stress[J]. Plant Science Journal, 2018, 36(3): 393-401. DOI: 10.11913/PSJ.2095-0837.2018.30393
    [8]LUO Hai-Jing, ZHANG Yong-Qing, SHI Yan-Hua, LI Xin, ZHANG Yao-Wen. Effects of Drought Stress on the Physiological Characteristics of Different Adzuki Bean Varieties at the Seedling Stage[J]. Plant Science Journal, 2014, 32(5): 493-501. DOI: 10.11913/PSJ.2095-0837.2014.50493
    [9]SUN Hao, WANG Qian, GUAN Yang, LIU Bao-Dong. Effects of Microlepia strigosa under Drought Stress on Physiological Change Laws[J]. Plant Science Journal, 2013, 31(6): 576-582. DOI: 10.3724/SP.J.1142.2013.60576
    [10]LI Yun, ZHANG Gang, YANG Ji-Shuang. Effects of Heat Shock on Physiological Metabolism of Chrysanthemum under High Temperature Stress[J]. Plant Science Journal, 2008, 26(2): 175-178.

Catalog

    Article views (1603) PDF downloads (1609) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return