Advance Search
Zhao Gui-Hong, Shi Hong, Zhang Ni-Ni, Lu Miao, Wang Jing, Li Tao. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Science Journal, 2017, 35(1): 64-72. DOI: 10.11913/PSJ.2095-0837.2017.10064
Citation: Zhao Gui-Hong, Shi Hong, Zhang Ni-Ni, Lu Miao, Wang Jing, Li Tao. Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort[J]. Plant Science Journal, 2017, 35(1): 64-72. DOI: 10.11913/PSJ.2095-0837.2017.10064

Cloning and expression analysis of CYP83B1 from Isatis indigotica Fort

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31200221), Fundamental Research Funds for the Central Universities (GK201405001), and Innovation Funds of Graduate Programs, SNNU (2015CXS025).

More Information
  • Received Date: June 13, 2016
  • Available Online: October 31, 2022
  • Published Date: February 27, 2017
  • The CYP83B1 gene of Isatis indigotica Fort. was cloned and its expression patterns were analyzed. Results showed that the length of the IiCYP83B1 gene was 1652 bp, and included two exons and one intron. The full length cDNA of IiCYP83B1 was 1500 bp, encoding a protein of 499 amino acids. IiCYP83B1 was a hydrophobic protein located in the endoplasmic reticulum, without a transmembrane domain or signal peptide. Its secondary structure mainly included alpha helixes and irregular coils. Homologous comparison illustrated that IiCYP83B1 has close relationship with Raphanus sativus Linn., Brassica napus L., Brassica oleracea L., and Brassica rapa L. qRT-PCR analysis indicated that IiCYP83B1 was expressed in root, stem, flower, and fruit, and highly expressed in leaf. It was also highly expressed in the seedling, vegetative growth, and flowering stages, compared with the germination period. Moreover, IiCYP83B1 could be induced significantly by methyl jasmonate (MeJA) and glucose (Glu), but repressed by low temperature (4℃) and salicylic acid (SA). Results in this experiment provide reference for further functional study on IiCYP83B1.
  • [1]
    陈宇航, 郭巧生, 邓乔华, 田汉卿. 菘蓝不同种质活性成分动态积累及其药材品质比较[J]. 中国中药杂志, 2012, 37(11):1541-1545.

    Chen YH, Guo QS, Deng QH, Tian HQ. Dynamic accumulations of bioactive components in different germplasm Isatis indigotica and comparative of its quality of medical material[J]. China Journal of Chinese Materia Medica, 2012, 37(11):1541-1545.
    [2]
    杨飞, 徐延浩. 四倍体菘蓝基因组DNA甲基化的甲基化敏感扩增多态性分析[J]. 中草药, 2013, 44(3):344-348.

    Yang F, Xu YH. Analysis on genome DNA methylation of tetraploid Isatis indigotica by methylation sensitive amplification polymorphism[J]. Chinese Traditional and Herbal Drugs, 2013, 44(3):344-348.
    [3]
    郑剑玲, 王美惠, 杨秀珍, 吴立军. 大青叶和板蓝根提取物的抑菌作用研究[J]. 中国微生态学杂志, 2003, 15(1):18-19.

    Zheng JL, Wang MH, Yang XZ, Wu LJ. Study on bacte-riostasis of Isatis indigotic Fort.[J]. Chinese Journal of Microecology, 2003, 15(1):18-19.
    [4]
    赵宇, 孔稳稳, 沙伟, 李晶. 脂肪族芥子油苷侧链修饰酶基因[STXFX]FMOGS-OX4[STXFZ]表达模式分析[J]. 植物科学学报, 2013, 31(4):406-414.

    Zhao Y, Kong WW, Sha W, Li J. Expression pattern of[STXFX]FMOGS-OX4,[STXFZ] a biosynthetic gene involved in aliphatic glucosinolate side-chain modification[J]. Plant Science Journal, 2013, 31(4):406-414.
    [5]
    Yan XF, Chen SX. Regulation of plant glucosinolate metabolism[J]. Planta, 2007, 226(6):1343-1352.
    [6]
    Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X. Glucosinolate biosynthetic genes in Brassica rapa[J]. Gene, 2011, 487(2):135-142.
    [7]
    陈亚州, 阎秀峰. 芥子油苷在植物-生物环境关系中的作用[J]. 生态学报, 2007, 27(6):2584-2593.

    Chen YZ, Yan XF. The role of glucosinolates in plant-biotic environment interactions[J]. Acta Ecologica Sinica, 2007, 27(6):2584-2593.
    [8]
    Plate AYA, Gallaher DD. Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats[J]. Carcinogenesis, 2006, 27(2):287-292.
    [9]
    Wittstock U, Halkier BA. Glucosinolate research in the Arabidopsis era.[J]. Trends Plant Sci, 2002, 7(6):263-270.
    [10]
    Zhu B, Wang Z, Yang J, Zhu Z, Wang H. Isolation and expression of glucosinolate synthesis genes[STXFX]CYP83A1 and CYP83B1[STXFZ] in pak choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S. H. Lee) Hanelt)[J]. Int J Mol Sci, 2012, 13(5):5832-5843.
    [11]
    Grubb CD, Abel S. Glucosinolate metabolism and its control[J]. Trends Plant Sci, 2006, 11(2):89-100.
    [12]
    Grubb CD, Zipp BJ, Ludwig-Mülle J, Masuno MN, Molinski TF, Abel S. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis[J]. Plant J, 2004, 40(6):893-908.
    [13]
    Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C. The[STXFX]SUR2[STXFZ] gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulat or of auxin homeostasis[J]. Proc Natl Acad Sci USA, 2000, 97(26):14819-14824.
    [14]
    Bak S, Feyereisen R. The involvement of two P450 Enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis[J]. Plant Physiol, 2001, 127(1):108-118.
    [15]
    Bak S, Tax FE, Fedmann KA, Galbraitha DW, Feyereisena R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell, 2001, 13(1):101-111.
    [16]
    Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metaboli-zing oximes in the biosynthesis of glucosinolates in Arabidopsis[J]. Plant Physiol, 2003, 133(1):63-72.
    [17]
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4), 402-408.
    [18]
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides:SignalP 3.0[J]. J Mol Biol, 2004, 340(4):783-795.
    [19]
    郭文芳, 刘德春, 杨莉, 庄霞, 张涓涓, 王书胜, 刘勇. 柑橘[STXFX]MYB15[STXFZ]基因的克隆与表达分析[J]. 植物科学学报, 2015, 33(6):808-818.

    Guo WF, Liu DC, Yang L, Zhuang X, Zhang JJ, Wang SS, Liu Y. Cloning and expression analysis of[STXFX]MYB15[STXFZ] genes from Citrus[J]. Plant Science Journal, 2015, 33(6):808-818.
    [20]
    Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modeling[J]. Bioinformatatics, 2006, 22(2):195-201.
    [21]
    石璐, 李梦莎, 王丽华, 于萍, 李楠, 国静, 阎秀峰. COI1参与茉莉酸调控拟南芥吲哚族芥子油苷生物合成过程[J]. 生态学报, 2012, 32(17):5438-5444.

    Shi L, Li MS, Wang LH, Yu P, Li N, Guo J, Yan XF. COI1 is involved in jasmonate-induced indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Acta Ecolo-gica Sinica, 2012, 32(17):5438-5444.
    [22]
    Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(5):814-828.
    [23]
    Schreiner M, Krumbein A, Knorr D, Smetanska I. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate[J]. J Agric Food Chem, 2011, 59(4):1400-1405.
    [24]
    Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1(OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis[J]. Plant J, 2006, 47(1):10-24.
    [25]
    Kliebenstein DJ, Figuth A, Mitchell-Olds T. Genetic architecture of plastic methyl jasmonate response in Arabidopsis thaliana[J]. Genetics, 2002, 161(4):1685-1696.
    [26]
    Wei J, Miao H, Wang Q. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts[J]. Sci Hortic, 2011, 129(4):535-540.
    [27]
    Gigolashvili T, Yatusevich R, Berger B, Müller C, Flugge UI. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana[J]. Plant J, 2007, 51(2):247-261.
    [28]
    Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW. Establishing glucose-and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine[J]. Genome Res, 2006, 16(3):414-427.
  • Related Articles

    [1]Liu Fenfen, Mo Liangtuan, Ou Guoteng, Nie Yimei, Niu Tao, Huang Qinjun. Genetic diversity and genetic structure analysis of wild Chinese Rosa roxburghii Tratt. germplasm resources[J]. Plant Science Journal, 2024, 42(3): 350-358. DOI: 10.11913/PSJ.2095-0837.23248
    [2]Zhao Zi-Chen, Zhao Yu-Juan, Gong Xun, Pan Yue-Zhi. Study on genetic diversity and distribution patterns of Bupleurum dracaenoides Huan C. Wang, Z. R. He & H. Sun[J]. Plant Science Journal, 2022, 40(1): 1-10. DOI: 10.11913/PSJ.2095-0837.2022.10001
    [3]Ye Xing-Zhuang, Wen Guo-Wei, Zhang Ming-Zhu, Liu Yi-Peng, Fan Hui-Hua, Zhang Guo-Fang, Chen Shi-Pin, Liu Bao. Genetic diversity and genetic structure of a rare and endangered species Semiliquidambar cathayensis Hung T. Chang[J]. Plant Science Journal, 2021, 39(4): 415-423. DOI: 10.11913/PSJ.2095-0837.2021.40415
    [4]Liu Xia, Chu Hai-Jia, Chen Li, Qiao Ni-Qin, Yan Juan. Fine-scale genetic structure of Medicago ruthenica Trautv.[J]. Plant Science Journal, 2020, 38(5): 663-670. DOI: 10.11913/PSJ.2095-0837.2020.50663
    [5]Du Shu-Hui, Wang Zhao-Shan, Hu Xiao-Yan, Zhang Jian-Guo. Nucleotide polymorphism and genetic structure of Populus davidiana Dode[J]. Plant Science Journal, 2018, 36(2): 245-251. DOI: 10.11913/PSJ.2095-0837.2018.20245
    [6]Li Xiang, Zhou Ya-Dong, Huang Yu-Qian, Li Xiao-Yan, Liu Xing. Analysis on the genetic diversity and structure of Isoetes taiwanensis based on nuclear and chloroplast DNA sequences[J]. Plant Science Journal, 2017, 35(6): 851-855. DOI: 10.11913/PSJ.2095-0837.2017.60851
    [7]QIN Yong-Yan, WANG Yi-Ling, ZHANG Qin-Di, BI Run-Cheng, YAN Gui-Qin. Analysis on the Population Genetic Diversity of an Endangered Plant (Elaeagnus mollis) by SSR Markers[J]. Plant Science Journal, 2010, 28(4): 466-472.
    [8]LI Yan, , LU Shun-Bao, LIU Xiao-Yan, , JIANG Yu-Mei. ISSR Analysis on Genetic Diversity of Endanged Plant Pseudotsuga gaussenii Flous[J]. Plant Science Journal, 2010, 28(1): 38-42.
    [9]HU Bo, CHEN Yuan-Yuan, LI Shou-Chun, LI Wei. Preliminary Studies on Genetic Diversity and Clonal Structure of Heleocharis valleculosa f. setosa Populations in Poyang Lake[J]. Plant Science Journal, 2009, 27(2): 145-151.
    [10]Song Zhiping, Wang Xiaofan, Pan Mingqing. A COMPARATIVE STUDY ON POPULATION GENETIC STRUCTURE AND BREEDING SYSTEM BETWEEN BUTOMUS UMBELLATUS AND LIMNOCHARIS FLAVA (BUTOMACEAE)[J]. Plant Science Journal, 2000, 18(2): 91-98.
  • Cited by

    Periodical cited type(12)

    1. 赵锐明,回嵘. 我国不同气候带优势高山垫状植物的小尺度点格局研究. 生态科学. 2023(02): 145-154 .
    2. 王皓,梁钰,周利杰,王斌,魏来. 极小种群黄花绿绒蒿点格局分析. 北京师范大学学报(自然科学版). 2023(04): 637-643 .
    3. 董鹏,彭智奇,朱弘,朱淑霞,董京京,翟飞飞,钟育谦,郑爱春,王贤荣,伊贤贵. 南京老山秤锤树空间分布格局及种间关联性. 广西植物. 2022(02): 247-256 .
    4. 高金辉,韩家永,张厚良,林国英,张莹,艾志强,刘继云. 刺五加群落多样性海拔梯度变化及相似性. 森林工程. 2022(04): 53-60 .
    5. 郭忠玲,宋雪婷,范春楠,刘丹,郭梦媛,张永鑫. 紫椴天然种群空间分布与生命结构特征分析. 北华大学学报(自然科学版). 2022(06): 726-732 .
    6. 朱文婷,刘海坤,何睿,于东悦,夏鹰,党海山. 藏东南急尖长苞冷杉群落空间点格局分析及其时空动态. 生态学报. 2022(22): 8977-8984 .
    7. 张国娟,刘旻霞,李博文,穆若兰,于瑞新,徐璐,李亮. 玛曲高寒草甸植物黄帚橐吾与莓叶委陵菜种群点格局分析. 生态学杂志. 2021(06): 1660-1668 .
    8. 任毅华,周尧治,侯磊,方江平,罗大庆. 色季拉山急尖长苞冷杉种群不同龄级立木的空间分布格局. 生态学报. 2021(13): 5417-5424 .
    9. 黄小,朱江,姚兰,艾训儒,王进,吴漫玲,朱强,陈绍林. 水杉原生种群结构及空间分布格局. 生物多样性. 2020(04): 463-473 .
    10. 王鑫,袁庆军,孙楷,郭增祥,池秀莲,黄璐琦. 甘肃地区野生当归的种群特性及其致危关联研究. 中国中药杂志. 2019(14): 2987-2995 .
    11. 刘铁山,岳永杰,李钢铁,乌云珠拉,吕俊林. 浑善达克沙地丘间低地3种典型群落空间点格局研究. 内蒙古林业科技. 2019(02): 16-21 .
    12. 周秋静,赵常明,王杨,郭增跃,陈芳清,谢宗强. 神农架天然针阔混交林乔木更新的空间格局. 植物科学学报. 2019(04): 454-463 . 本站查看

    Other cited types(19)

Catalog

    Article views (1235) PDF downloads (974) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return