Advance Search
Jin Chun-Mei, Zhou Kun, Zhang Jin-Jin. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development[J]. Plant Science Journal, 2017, 35(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2017.10079
Citation: Jin Chun-Mei, Zhou Kun, Zhang Jin-Jin. Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development[J]. Plant Science Journal, 2017, 35(1): 79-86. DOI: 10.11913/PSJ.2095-0837.2017.10079

Interactions of MADS-box transcription factors CsGLO1, CsGLO2 and CsAG in Camellia sinensis flower development

Funds: 

This work was supported by grants from the Natural Basic Research Projects in Shaanxi Province (2014JM3075) and Fundamental Research Funds for the Central Universities (GK201503048).

More Information
  • Received Date: July 25, 2016
  • Available Online: October 31, 2022
  • Published Date: February 27, 2017
  • In this study, the interactions between MADS-box B transcription factors GLO1 and CsGLO2, and C transcription factor CsAG in Camellia sinensis L. in relation to flower development as well as their possible subcellular localizations were investigated using the yeast two-hybrid method and bimolecular fluorescence complementation (BiFC). In this study, five yeast expression vectors were constructed and the transcriptional activation activities of the three proteins were tested by yeast one-hybridization. The interactions among the three proteins were further analyzed by yeast two-hybrid assay. The results showed that the three proteins had no transcriptional activation activity, but interactions did occur among them. Six BiFC expression vectors were constructed and transformed into the leaf epidermal cells of tobacco (Nicotiana benthamiana L.) by pressure injection. The fluorescence signals were then observed by confocal laser scanning microscopy. The results showed that the three proteins could form homo- and heterodimers, and had specific patterns of interaction in the cytoplasm. This study could provide a theoretical basis for the inhibition of C. sinensis ‘flower and fruit present’ using molecular biology techniques.
  • [1]
    叶乃兴, 刘金英, 饶耿慧. 茶树的开花习性与茶树花产量[J]. 福建茶业, 2008, 32(4):16-18.

    Ye NX, Liu JY, Rao GH. Flowering habit and flower yield of tea plant[J]. Tea In Fujian, 2008, 32(4):16-18.
    [2]
    杨昌云, 朱永兴. 茶树生殖生长的影响因素及控制方法[J]. 中国茶叶,1999(5):6-7.

    Yang CY, Zhu YX. Influencing factors and control methods of reproductive growth of tea plant[J]. China Tea, 1999(5):6-7.
    [3]
    Bemer M, Angenent GC. Floral organ initiation and deve-lopment[J]. Journal of the Royal Asiatic Society, 2010, 100(1):29-36.
    [4]
    Causier B, Schwarz-Sommer Z, Davies B. Floral organ identity:20 years of ABCs[J]. Semin Cell Dev Biol, 2010, 21(1):73-79.
    [5]
    ÓMaoiléidigh DS, Graciet E, Wellmer F. Gene networks controlling Arabidopsis thaliana flower development[J]. New Phytologist, 2014, 201(1):16-30.
    [6]
    Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development:duplication and divergence within the[STXFX]APETALA3[STXFZ] and PISTILLATA MADS-box gene lineages[J]. Genetics, 1998, 149(2):765-783.
    [7]
    Wuest SE, Wellmer F. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA[J]. P Natl Acad Sci USA, 2012, 109(33):13452-13457.
    [8]
    Sundstr m JF, Nakayama N, Glimelius K, Irish VF. Direct regulation of the floral homeotic[STXFX]APETALA1[STXFZ], gene by APETALA3 and PISTILLATA in Arabidopsis[J]. Plant J,2006, 46(4):593-600.
    [9]
    Gómez-Mena C, De FS, Costa MM, Angenent GC, Sablowski R. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis[J]. Development, 2005, 132(3):429-438.
    [10]
    Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors[J]. Nature, 1990, 346(6279):35-39.
    [11]
    Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. The[STXFX]SEP4[STXFZ] gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Curr Biol, 2004, 14(21):1935-1940.
    [12]
    Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409(6819):525-529.
    [13]
    Theissen G, Saedler H. Plant biology. Floral quartets[J]. Nature, 2001, 409(6819):469-471.
    [14]
    Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. Multicolor bimolecular fluorescence complemen-tation reveals simultaneous formation of alternative CBL/CIPK complexes in planta[J]. Plant J, 2008, 56(3):505-516.
    [15]
    周坤. 茶树MADS-box家族B类基因[STXFX]CsGLO1和CsGLO2[STXFZ]的克隆及其与C类基因CsAG的功能研究[D]. 陕西:陕西师范大学, 2015. Zhou K. Cloning of[STXFX]CsGLO1 and CsGLO2[STXFZ] of the MADS-box family B gene and its function on CsAG in Camellia sinensis[D].Shaanxi:Shaanxi Normal University, 2015.
    [16]
    程国山. 茶树CSAG基因克隆及AG基因系统进化分析[D]. 陕西:陕西师范大学, 2014.

    Cheng GS. Cloning of CsAG gene and phylogenetic analysis of CsAG gene in Camellia sinensis[D]. Shaanxi:Shaanxi Normal University, 2014.
    [17]
    欧阳沫, 唐潇, 黄惜, 袁红梅. 巴西橡胶树[STXFX]HbICE1[STXFZ]基因酵母菌双杂交诱饵载体的构建及互作蛋白的筛选[J]. 植物科学学报, 2016, 34(2):255-262.

    OuYang M, Tang X, Huang X, Yuan HM. Construction of yeast two-hybrid bait vector and the screening of proteins interacting with[STXFX]HbICE1[STXFZ] in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2):255-262.
    [18]
    Waadt R, Schlücking K, Schroeder JI, Kudla J. Proteinfragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations[J]. Methods Mol Biol, 2014, 1062:629-658.
    [19]
    Gramzow L, Theissen G. A hitchhiker's guide to the MADS world of plants[J]. Genome Biol, 2010, 11(6):1-11.
    [20]
    ÓMaoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwasniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS[J]. Plant Cell, 2013, 25(7):2482-2503.
    [21]
    Zhang JS, Li Z, Zhao J, Quan H, Zhao M, He C. Deciphering the Physalis floridana double-layered-[STXFX]lantern1[STXFZ] mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae[J]. Plant Physiol, 2014, 164(2):748-764.
    [22]
    Zhang S, Zhang JS, Zhao J, He C. Distinct subfunctiona-lization and neofunctionalization of the B-class MADS-box genes in Physalis floridana[J]. Planta, 2015, 241(2):387-402.
    [23]
    Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato[J]. J Exp Bot, 2008, 59(8):2253-2265.
    [24]
    Geuten K, Irish V. Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions[J]. Plant Cell, 2010, 22(8):2562-2578.
    [25]
    Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K. Pistillata-duplications as a mode for floral diversification in (Basal) Asterids[J]. Mol Biol Evol, 2009, 26(11):2627-2645.
    [26]
    Mcgonigle B, Bouhidel K, Irish VF. Nuclear localization of the Arabidopsis[STXFX]APETALA3[STXFZ] and PISTILLATA homeotic gene products depends on their simultaneous expression[J]. Gene Dev, 1996, 10(14):1812-1821.
    [27]
    Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Plant J, 2012, 109(5):1560-1565.
    [28]
    Theissen G. Development of floral organ identity:stories from the MADS house[J]. Currt Opin Plant Biol, 2001, 4(1):75-85.
  • Related Articles

    [1]Li Lin, Fu Qiang, Yang Tao, Mo Xiaolian, Chen Xiaolong, Zhao Jiehong, Zou Jie. cDNA yeast library construction of Dendrobium officinale Kimura et Migo seeds and screening and analysis of DELLA interacting proteins[J]. Plant Science Journal, 2025, 43(2): 221-229. DOI: 10.11913/PSJ.2095-0837.24215
    [2]Jia Yanru, Jin Yufan, Jiao Yuan, Zhou Yingxu, Shi Yang, Chen Ji, Chen Yani, Huang Yanyan, Huang Jin. A review on the research progress of the Phytocyanin (PC) protein family[J]. Plant Science Journal, 2024, 42(5): 644-653. DOI: 10.11913/PSJ.2095-0837.23290
    [3]Chen Si-Meng, Wang Jin-Xin, Dang Ming-Jing, Wang Zheng-Dao, Li Jing. Construction of two-hybrid library of yeast and screening of NnWRKY40 interacting proteins in Nelumbo nucifera Gaertn. ‘Baihuajian’[J]. Plant Science Journal, 2023, 41(4): 447-457. DOI: 10.11913/PSJ.2095-0837.22239
    [4]Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671
    [5]Kang Ya-Chao, Liu Ping, Wang Ling-Hui, Mo Zhe, Qin Li-Ting, Teng Wei-Chao. Physiological responses of Erythrophleum fordii seedlings under SNP-AlCl3 interaction[J]. Plant Science Journal, 2019, 37(4): 521-529. DOI: 10.11913/PSJ.2095-0837.2019.40521
    [6]Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
    [7]GAO Shuang, LIU Xiao-Chen, DONG Zheng, LIU Mao-Yan, DAI Liang-Ying. Advance of Phyllosphere Microorganisms and Their Interaction with the Outside Environment[J]. Plant Science Journal, 2016, 34(4): 654-661. DOI: 10.11913/PSJ.2095-0837.2016.40654
    [8]OUYANG Mo, TANG Xiao, HUANG Xi, YUAN Hong-Mei. Construction of Yeast Two-hybrid Bait Vector and the Screening of Proteins Interacting with HbICE1 in Hevea brasiliensis[J]. Plant Science Journal, 2016, 34(2): 255-262. DOI: 10.11913/PSJ.2095-0837.2016.20255
    [9]XIONG Zhi-Yong, XIA Fu-Jian, LU Shi-Guo. The Protein Classification of Fine Rapeseed Seed Drags[J]. Plant Science Journal, 2001, 19(3): 259-261.
    [10]YANG Cheng-Li, LIU De-Li. Progress in the Studies of Sweet Protein Thaumatin[J]. Plant Science Journal, 2001, 19(2): 153-157.

Catalog

    Article views (1271) PDF downloads (1241) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return