Citation: | Zhuang Wei-Wei, Zhang Yuan-Ming. Effects of biological soil crusts on the photosynthetic characteristics of three desert herbs in Gurbantunggut Desert[J]. Plant Science Journal, 2017, 35(3): 387-397. DOI: 10.11913/PSJ.2095-0837.2017.30387 |
[1] |
Belnap J, Lange OL. Biological Soil Crusts:Structure, Function, and Management[M]. Berlin:Springer-Verlag, 2001.
|
[2] |
王雪芹, 王涛, 蒋进, 赵从举. 古尔班通古特沙漠南部沙面稳定性研究[J]. 中国科学, 2004, 34(8):763-768.
Wang XQ, Wang T, Jiang J, Zhao CJ. The sand surface stability in the south of Gurbantunggut Desert[J]. Science in China Series, 2004, 34(8):763-768.
|
[3] |
Bowker MA, Belnap J, Davidson DW, Harland G. Correlates of biological soil crust abundance across a continuum of spatial scales:Support for a hierarchical conceptual model[J]. J Appl Ecol, 2006, 43(1):152-163.
|
[4] |
Zhang YM, Wang HL, Wang WQ, Yang WK, Zhang DY. The microstructure of microbitic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of northwestern China[J]. Geoderma, 2006,132(3):441-449.
|
[5] |
Perez EL. Microbiotic crusts in the high equatorial Andes and their influence on pararmo soils[J]. Catena, 1997, 31(3):173-198.
|
[6] |
Kidron GJ, Tal SY. The effect of biocrusts on evaporation from sand dunes in the Negev Desert[J]. Geoderma, 2012, 179-180:104-112.
|
[7] |
Maester FT, Escolar C, de Guevara ML, Quero JL. Change in biocrust drive carbon cycle responses to climate change in drylands[J]. Global Change Biol, 2014, 20(8):2697-2698.
|
[8] |
Zhuang WW, Downing A, Zhang YM. The influence of biological soil crusts on 15N translocation in soil and vascular plant in a temperate desert of Northwestern China[J]. J Plant Ecol-UK, 2015, 8(4):420-428.
|
[9] |
Li XR, Jia XH, Long LQ, Zerbe S. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China)[J]. Plant Soil, 2005, 277(1-2):375-385.
|
[10] |
Godínez-Alvarez H, Morín C, Rivera-Aguilar V. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert[J]. Plant Biology, 2012, 14(14):157-162.
|
[11] |
Kidron GJ. The negative effect of biocrusts upon annual-plant growth on sand dunes during extreme droughts[J]. J Hydrol, 2014, 508(1):128-136.
|
[12] |
聂华丽, 张元明, 吴楠, 张静, 张丙昌. 生物结皮对5种不同形态的荒漠植物种子萌发的影响[J]. 植物生态学报, 2009, 33(1):161-170.
Nie HL, Zhang YM, Wu N, Zhang J, Zhang BC. Effects of biological crusts on the germination of five desert vascular plants with different seed morphologies[J]. Chinese Journal of Plant Ecology, 2009, 33(1):161-170.
|
[13] |
张元明, 聂华丽. 生物土壤结皮对准噶尔盆地5种荒漠植物幼苗生长与元素吸收的影响[J]. 植物生态学报, 2011, 35(4):380-388.
Zhang YM, Nie HL. Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China[J]. Chinese Journal of Plant Ecology, 2011, 35(4):380-388.
|
[14] |
李国栋, 张元明. 生物土壤结皮与种子附属物对4种荒漠植物种子萌发的交互影响[J]. 中国沙漠, 2014, 34(3):725-731.
Li GD, Zhang YM. Interactive effects of biological soil crusts and seed appendages on seed germination of four desert species[J]. Journal of Desert Research, 2014, 34(3):725-731.
|
[15] |
McCrackin ML, Harms TK, Grimm NB, Hall SJ, Kaye JP. Responses of soil microorganisms to resource availability in urban, desert soils[J]. Biogeochemistry, 2008, 87(2):143-155.
|
[16] |
Wang XQ, Jiang J, Wang YC. Responses of ephemeral plant germination and growth to water and heat conditions in the southern part of Gurbantunggut Desert[J]. Chinese Sci Bull, 2006, 51(S1):110-116.
|
[17] |
张元明, 潘惠霞, 潘伯荣. 古尔班通古特沙漠不同地貌部位生物结皮的选择性分布[J]. 水土保持学报, 2004, 18(4):61-64.
Zhang YM, Pan HX, Pan BR. Distribution characteristics of biological soil crust on sand dune surface in Gurbantunggut Desert, Xinjiang[J]. Journal of Water and Soil Conservation, 2004, 18(4):61-64.
|
[18] |
金江群, 郭泉水, 朱莉, 刘建锋, 裴顺祥. 干旱和复水对崖柏光合特性及水分利用效率的影响[J]. 植物科学学报, 2012, 30(6):599-610.
Jin JQ, Guo QS, Zhu L, Liu JF, Pei SX. Photosynthetic characteristics and water use efficiency of Thuja sutchuenensis Franch. during water stress and recovery[J]. Plant Science Journal, 2012, 30(6):599-610.
|
[19] |
Tanaka R, Koshino Y, Sawa S, Ishiguro S, Okada K. Overexpression of chlorophyllide a oxygenase (CAO) enlarges the antenna size of photosystemⅡ in Arabidopsis thaliana[J]. Plant J, 2001, 26(4), 365-373.
|
[20] |
Harper KT, Pendleton RL. Cyanobacteria and cyanolichens can they enhance availability of essential minerals for higher plants?[J]. Great Basin Nat, 1993, 53(1):59-72.
|
[21] |
Gold WG, Bliss LC. Water limitations and plant community development in a polar desert[J]. Ecology, 1995, 76(5):1558-1568.
|
[22] |
Greene RSB, Chartres CJ, Hodgkinson KC. The effects of fire on the soil in a degraded semiarid woodland.Ⅰ. Cryptogam cover and physical and micromorphological properties[J]. Aust J Soil Res, 1990, 28(5):755-777.
|
[23] |
Coppola A, Basile A, Wang X, Comegna V, Tedeschi A, Mele G, Comegna A. Hydrological behaviour of microbiotic crusts on sand dunes:example from NW China comparing infiltration in crusted and crust-removed soil[J]. Soil Till Res, 2011, 117(3):34-43.
|
[24] |
West NE. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J]. Adv Ecol Res, 1990, 20:179-223.
|
[25] |
Williams JD, Dobrowolski JP, West NE. Microbiotic crust influence on unsaturated hydraulic conductivity[J]. Arid Soil Res Rehab, 1999, 13(2):145-154.
|
[26] |
周晓兵, 张元明, 王莎莎,张丙昌, 张静. 3种荒漠植物幼苗生长和光合生理对氮增加的响应[J]. 中国沙漠, 2011, 31(12):3340-3349.
Zhou XB, Zhang YM, Wang SS, Zhang BC, Zhang J. Effect of nitrogen input on growth and photosynthetic physiology of three desert species seedlings[J]. Journal of Desert Research, 2011, 31(12):3340-3349.
|
[27] |
Lawlor DW, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant Cell Environ, 2002, 25(2):275-294.
|
[28] |
李荣生, 许煌灿, 尹光天, 杨锦昌, 李双忠. 植物水分利用效率的研究进展[J]. 林业科学研究, 2003, 16(3):366-371.
Li RS, Xu HC, Yin GT, Yang JC, Li SZ. Advances in the water use efficiency of plant[J]. Forest Research, 2003, 16(3):366-371.
|
[29] |
胡增辉, 贾青青, 郑健, 杨柳, 冷平生. 德国景天扦插苗对干旱胁迫的生理响应[J]. 植物科学学报, 2015, 33(6):840-846.
Hu ZH, Jia QQ, Zheng J, Yang L, Leng PS. Studies on the physiological response of Sedum hybridum cutting seedlings to drought stress[J]. Plant Science Journal, 2015, 33(6):840-846.
|
[30] |
Clavel D, Drame NK, Roy-Macauley H, Braconnier S, Laffray D. Analysis of early responses to drought associa-ted with field drought adaptation in four Sahelian groundnut (Arachis hypogaea L.) cultivars[J]. Environ Exp Bot, 2005, 54(3):219-230.
|
[31] |
Tezara W, Mitchell VJ, Driseoll SD. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 1999, 401(6756):914-917.
|
[32] |
Maxwell K, Johnson GN. Chlorophyll fluorescence:a practical guide[J]. J Exp Bot, 2000, 51(345):659-668.
|
[33] |
Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. BBA-Biomembranes, 1989, 990(1):87-92.
|
[34] |
Guerfel M, Baccouri O, Boujnah D, Chaibi W, Zarrouk M. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars[J]. Sci Hortic-Amsterdam, 2009, 119(3), 257-263.
|
[35] |
Pompelli MF, Barata-Luís R, Vitorino HS, Goncalves ER, Rolim EV. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery[J]. Biomass Bioenergy, 2010, 34(8):1207-1215.
|