Citation: | Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001 |
[1] |
王博. 真叶植物叶绿体基因的分子进化及卷柏属rbcS基因家族的进化研究[D]. 北京:中国科学院大学, 2015:1-67.
|
[2] |
Harris EH, Boynton JE, Gillham NW. Chloroplast ribosomes and protein synthesis[J]. Microbiol Rev, 1994, 58(4):700-754.
|
[3] |
Zaita N, Torazawa K,Shinozaki K,Sugiura M. Trans splicing in vivo:joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts[J]. Febs Lett, 1987, 210(2):153-156.
|
[4] |
Maier RM, Neckermann K, Igloi GL, Kossel H. Complete sequence of the maize chloroplast genome:gene content, hotspots of divergence and fine tuning of genetic information by transcript editing[J]. J Mol Biol, 1995, 251(5):614-628.
|
[5] |
Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs[J]. Proc Natl Acad Sci USA, 1987, 84(24):9054-9058.
|
[6] |
Wu CS, Chaw SM. Evolutionary stasis in Cycad plastomes and the first case of plastome GC-biased gene conversion[J]. Genome Biol Evol, 2015, 7(7):2000-2009.
|
[7] |
Perry AS, Wolfe KH. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat[J]. J Mol Evol, 2002, 55(5):501-508.
|
[8] |
Zhu A, Guo W, Gupta S, Fan WS, Mower JP. Evolutio-nary dynamics of the plastid inverted repeat:the effects of expansion, contraction, and loss on substitution rates[J]. New Phytol, 2016, 209(4):1747-1756.
|
[9] |
Li FW, Kuo LY, Pryer KM, Rothfels CJ. Genes translocated into the plastid inverted repeat show decelerated substitution rates and elevated GC content[J].Genome Biol Evol, 2016, 8(8):2452-2458.
|
[10] |
Lin CP, Wu CS, Huang YY, Chaw SM. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction[J]. Genome Biol Evol, 2012, 4(3):374-381.
|
[11] |
苏应娟, 王艇. 水龙骨科附生蕨类Rubisco大亚基的适应性进化:正向选择位点的鉴定[J]. 中山大学学报(自然科学版), 2008, 47(5):74-80.
Su YJ, Wang T. Adaptive evolution of large subunits of Rubisco solanopteris of the polypodiaceae:identification of positive selection sites[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(5):74-80.
|
[12] |
Hao DC, Chen SL, Xiao PG. Molecular evolution and positive Darwinian selection of the chloroplast maturase matK[J]. J Plant Res, 2010, 123(2):241-247.
|
[13] |
张丽君, 陈洁, 王艇. 蕨类植物叶绿体rps4基因的适应性进化分析[J]. 植物研究, 2010, 30(1):42-50.
Zhang LJ, Chen J, Wang T. Adaptive evolution in the chloroplast gene rps4 in ferns[J]. Bulletin of Botanical Research, 2010, 30(1):42-50.
|
[14] |
Liu SS, Ping JY, Wang Z, Wang T, Su YJ. Complete chloroplast genome of the tree fern Alsophila podophylla (Cyatheaceae)[J]. Mitochondrial DNA Part B, 2018, 3(1):48-49.
|
[15] |
Kearse M, Moir R, Wilson A. Geneious Basic:an integra-ted and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.
|
[16] |
Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
|
[17] |
Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode[J]. PLoS One, 2011, 6(5):e19254.
|
[18] |
Li FW, Kuo LY, Rothfels CJ,Ebihara A, Chiou WL, et al.RbcL and matK earn two thumbs up as the core DNA barcode for ferns[J]. PLoS One, 2011, 6(10):e26597.
|
[19] |
PPGⅠ. A community-derived classification for extant lycophytes and ferns[J]. J Syst Evol, 2016, 54(6):563-603.
|
[20] |
Posada D, Crandall KA. MODELTEST:Testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.
|
[21] |
Swofford DL. PAUP*:Phylogenetic Analysis Using Parsimony(and other methods):Version 4.0b10[M]. Sunderland:Sinauer Associates, 2002.
|
[22] |
Huelsenbeck JP, Ronquist F. MRBAYES:Bayesian infe-rence of phylogenetic trees[J]. Bioinformatics, 2001, 17(8):754-755.
|
[23] |
Pond SL, Frost SD, Muse SV. HyPhy:Hypothesis testing using phylogenies[J]. Bioinformatics, 2005, 21(5):676-679.
|
[24] |
Yang Z. PAML 4:Phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591.
|
[25] |
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Mol Biol Evol, 2005, 22(12):2472-2479.
|
[26] |
Birky CJ, Walsh JB. Biased gene conversion, copy number, and apparent mutation rate differences within chloroplast and bacterial genomes[J]. Genetics, 1992, 130(3):677-683.
|
[27] |
Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion[J]. Plant J, 2006, 46(1):85-94.
|
1. |
林协全,王宁,汪其双,陈春锦,刘锦航,邹双全,邹小兴. 福建金线莲的环境因子分析及生境适宜性评价. 山东农业大学学报(自然科学版). 2023(02): 201-207 .
![]() | |
2. |
林志强,马铁成. 新疆灌溉定额空间分布规律浅析. 水资源开发与管理. 2023(09): 69-74 .
![]() | |
3. |
艾拉努尔·卡哈尔,王鹏军,逯永满,袁祯燕,买买提明·苏来曼. 基于MaxEnt生态位模型预测木灵藓科三属植物在新疆的潜在分布区. 华中师范大学学报(自然科学版). 2022(03): 487-496+540 .
![]() | |
4. |
李雪,高广磊,孙桂丽,史浩伯,赵芳芳,马龙. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区. 西部林业科学. 2021(01): 145-152 .
![]() | |
5. |
祖丽米热·买买提依明,维尼拉·伊利哈尔,艾拉努尔·卡哈尔,吾热古丽·艾买提,买买提明·苏来曼,刘永英. 基于最大熵模型的真藓属植物在新疆的潜在分布预测. 森林工程. 2021(04): 1-10+21 .
![]() | |
6. |
古丽妮尕尔·穆太力普,夏尤普·玉苏甫,袁祯燕,买买提明·苏来曼. 阿尔金山国家级自然保护区的对齿藓属(Didymodon Hedw.)植物调查. 东北林业大学学报. 2020(01): 34-43 .
![]() | |
7. |
张梅,禄彩丽,魏喜喜,马珊,刘伟峰,宋健,彭瑞,李建贵. 基于MaxEnt模型新疆枣潜在适生区预测. 经济林研究. 2020(01): 152-161 .
![]() | |
8. |
周亚东,Mwangi Brian Njoroge,Ndungu John Mbari,王生位,胡光万,王青锋. 基于MaxEnt模型模拟肯尼亚茜草科河骨木属植物的潜在分布及其在植物志中的应用初探(英文). 植物科学学报. 2020(05): 636-643 .
![]() | |
9. |
杨冬臣,王佳颖,李静,杨一洲,张金林. 基于Maxent生态位模型的外来入侵植物刺果瓜在我国的适生区预测. 河北农业大学学报. 2019(03): 45-50 .
![]() | |
10. |
赵儒楠,何倩倩,褚晓洁,鲁志强,祝遵凌. 气候变化下千金榆在我国潜在分布区预测. 应用生态学报. 2019(11): 3833-3843 .
![]() |