Advance Search
Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
Citation: Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023

Adaptive evolutionary analysis of hetR gene in Nostoc

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (51709197), Fund for Shanxi "1331 Project" Key Innovative Research Team (TD201718), Applied Basic Research Program of Shanxi (201801D221282), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (201802102).

More Information
  • Received Date: May 23, 2019
  • Revised Date: August 09, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • Fifty-one sequences of the hetR gene from Nostoc and related species of cyanobacteria were studied. The coding proteins of hetR were analyzed by bioinformatics and phylogenetic analysis. The adaptive evolutionary characteristics of hetR were studied using the branch, site, and branch-site models. Phylogenetic analysis showed that the inner group could be divided into four large branches. Based on the adaptive evolutionary analysis, no significant positive selection sites were detected in other branches and algae strains of the three evolutionary models, indicating that most of the sites were under negative selection pressure. However, significant positively selected sites (126T) were detected in Nostoc commune (CHAB2802), indicating that the hetR gene has undergone adaptive evolution in Nostoc.
  • [1]
    McGregor GB. Freshwater cyanobacteria of north-eastern Australia:3. Nostocales[J]. Phytotaxa, 2018, 359(1):1.
    [2]
    Williams W, Büdel B, Williams S. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah[J]. Biogeosciences, 2018, 15(7):2149-2159.
    [3]
    Nowruzi B, Haghighat S, Fahimi H, Mohammadi E. Nostoc cyanobacteria species:a new and rich source of novel bioactive compounds with pharmaceutical potential[J]. Journal of Pharmaceutical Health Services Research, 2017, 9:5-12.
    [4]
    Muro-Pastor AM, Hess WR. Heterocyst differentiation:from single mutants to global approaches[J]. Trends Microbiol, 2012, 20(11):548-557.
    [5]
    Leganés F, Fernández-Pinas F, Wolk CP. Two mutations that block heterocyst differentiation have different effects on akinete differentiation in Nostoc ellipsosporum[J]. Mol Microbiol, 1994, 12(4):679-684.
    [6]
    Nei M, Kunar S. Molecular Evolution and Phylogenetics[M]. New York:Oxford University Press, 2000.
    [7]
    森林, 苏应娟, 张冰, 王艇. 凤尾蕨科植物rbcL基因的适应性进化分析[J]. 热带亚热带植物学报, 2010, 18(1):1-8.

    Sen L, Su YJ, Zhang B, Wang T. Adaptive evolution of the rbcL gene in Pteridaceous ferns[J]. Journal of Tropical and Subtropical Botany, 2010, 18(1):1-8.
    [8]
    周媛, 王博, 高磊, 王艇. 凤尾蕨科旱生蕨类rbcL基因的适应性进化和共进化分析[J]. 植物科学学报, 2011, 29(4):409-416.

    Zhou Y, Wang B, Gao L, Wang T. Adaptive evolution and coevolution of the rbcL gene in xeric Pteridaceae ferns[J]. Plant Science Journal, 2011, 29(4):409-416.
    [9]
    陈晓霞, 苏应娟, 王艇. 细鳞苔科psbA基因的适应性进化分析[J]. 西北植物学报, 2010, 30(8):1534-1544.

    Chen XX, Su YJ, Wang T. Adaptive evolution analysis of the psbA gene in Lejeuneaceae[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(8):1534-1544.
    [10]
    许可, 王博, 苏应娟, 高磊, 王艇. 蕨类植物psbD基因的适应性进化和共进化分析[J]. 植物科学学报, 2013, 31(5):429-438.

    Xu K, Wang B, Su YJ, Gao L, Wang T. Molecular evolution of psbD gene in ferns:selection pressure and co-evolutionary analysis[J]. Plant Science Journal, 2013, 31(5):429-438.
    [11]
    吴筱娉, 森林, 陈楠, 张潇, 马朝霞, 张钦宇. 蕨类植物psaA 基因的分子进化研究[J]. 植物科学学报, 2017, 35(2):177-185.

    Wu XP, Sen L, Chen N, Zhang X, Ma ZX, Zhang QY. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2):177-185.
    [12]
    巩超彦, 南芳茹, 冯佳, 吕俊平, 刘琪, 谢树莲. 串珠藻目植物rbcL基因的适应性进化分析[J]. 海洋与湖沼, 2017, 48(3):527-535.

    Gong CY, Nan FR, Feng J, Lü JP, Liu Q, Xie SL. Adaptive evolutionary analysis on rbcL gene of Batrachospermales[J]. Oceanologia et Limnologia Sinica, 2017, 48(3):527-535.
    [13]
    韩雨昕, 南芳茹, 巩超彦, 冯佳, 吕俊平, 等. 弯枝藻属rbcL基因的适应性进化分析[J]. 热带亚热带植物学报, 2019, 27(1):36-44.

    Han YX, Nan FR, Gong CY, Feng J, Lü JP, et al. Adaptive evolutionary analysis of the rbcL gene from Compsopogon (Rhodophyta)[J]. Journal of Tropical and Subtropical Botany, 2019, 27(1):36-44.
    [14]
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(12):2725-2729.
    [15]
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies:assessing the perfor-mance of PhyML 3.0[J]. Syst Biol, 2010, 59(3):307-321.
    [16]
    Posada D, Buckley TR. Model selection and model averaging in phylogenetics:advantages of akaike information criterion and bayesian approaches over likelihood ratio tests[J]. Syst Biol, 2004, 53(5):793-808.
    [17]
    Yang ZH. PAML 4:phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591.
    [18]
    Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. Multiple sequence alignment with the Clustal series of programs[J]. Nucleic Acids Res, 2003, 31(13):3497-3500.
    [19]
    Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symp Ser, 1999, 41:95-98.
    [20]
    Sayle RA, Milner-White EJ. RASMOL:biomolecular grap-hics for all[J]. Trends Biochem Sci, 1995, 20(9):374-376.
    [21]
    Wang B, Su YJ, Wang T. Molecular cloning of rbcS genes in Selaginella and the evolution of the rbcS gene family[J]. Arch Biol Sci, 2015, 67(2):373-383.
    [22]
    Yang ZH. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution[J]. Mol Biol Evol, 1998, 15(5):568-573.
    [23]
    Yang ZH. Computational molecular evolution[M]. New York:Oxford University Press, 2006.
    [24]
    Yang ZH. Inference of selection from multiple species alignments[J]. Curr Opin Genet Dev, 2002, 12(6):688-694.
    [25]
    Yang ZH, Bielawski JP. Statistical methods for detecting molecular adaptation[J]. Trends Ecol Evol, 2000, 15(12):496-503.
    [26]
    Yang ZH, Nielsen R, Goldman N, Pedersen AM. Codon-substitution models for heterogeneous selection pressure at amino acid sites[J]. Genetics, 2000, 155(1):431-449.
    [27]
    Zhang JZ. Frequent false detection of positive selection by the likelihood method with branch-site models[J]. Mol Biol Evol, 2004, 21(7):1332-1339.
    [28]
    Zhang JZ, Nielsen R, Yang ZH. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level[J]. Mol Biol Evol, 2005, 22(12):2472-2479.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Jiang Quan, Qiu Dong-Ping, Wang Zhi, Li Zuo-Zhou, Yao Xiao-Hong. Research progress on local adaptation in plants[J]. Plant Science Journal, 2021, 39(5): 559-570. DOI: 10.11913/PSJ.2095-0837.2021.50559
    [3]Xiong Zhe-Ming, Gao Yi-Bo, Ren Hui-Ying, Xu Bo, Wu Si-Wan, Peng Yuan, Sen Lin. Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species[J]. Plant Science Journal, 2020, 38(1): 10-22. DOI: 10.11913/PSJ.2095-0837.2020.10010
    [4]Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
    [5]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [6]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [7]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [8]ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
    [9]Wang Chongyun, Dang Chenglin. PLANT MATING SYSTEM AND ITS EVOLUTIONARY MECHANISM IN RELATION TO POPULATION ADAPTATION[J]. Plant Science Journal, 1999, 17(2): 163-172.
    [10]Xu Naiyu. THE TAXONOMY,ORIGIN AND EVOLUTION OF WHEAT[J]. Plant Science Journal, 1988, 6(2): 187-194.
  • Cited by

    Periodical cited type(3)

    1. 魏爱丽,杨谢,王捷,巩超彦,王清华,李艳晖. 念珠藻类(蓝藻)psbA基因的进化分析. 河南师范大学学报(自然科学版). 2023(01): 114-122 .
    2. 王绍良,张雯宇,高志民,周明兵,杨克彬,宋新章. 毛竹磷转运蛋白Ⅰ家族基因鉴定及表达模式. 浙江农林大学学报. 2022(03): 486-494 .
    3. 平晶耀,冯佩沛,郝静,栗锦烨,苏应娟,王艇. rps12基因在裸子植物中的分子进化式样. 科学通报. 2021(24): 3182-3202 .

    Other cited types(1)

Catalog

    Article views (750) PDF downloads (790) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return