Advance Search
Long Ting, Chen Jie, Yang Lan, Wang Yin, Xu Chao, Li Jing-Wen, Li Jun-Qing. Characteristics and environmental interpretation of communities of Taxus cuspidata Sieb. et Zucc., a plant species with extremely small populations[J]. Plant Science Journal, 2020, 38(1): 77-87. DOI: 10.11913/PSJ.2095-0837.2020.10077
Citation: Long Ting, Chen Jie, Yang Lan, Wang Yin, Xu Chao, Li Jing-Wen, Li Jun-Qing. Characteristics and environmental interpretation of communities of Taxus cuspidata Sieb. et Zucc., a plant species with extremely small populations[J]. Plant Science Journal, 2020, 38(1): 77-87. DOI: 10.11913/PSJ.2095-0837.2020.10077

Characteristics and environmental interpretation of communities of Taxus cuspidata Sieb. et Zucc., a plant species with extremely small populations

Funds: 

This work was supported by a grant from the National Key Research and Development Plan Project (2016YFC0503106).

More Information
  • Received Date: June 16, 2019
  • Revised Date: July 15, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • In this paper, the Taxus cuspidata Sieb. et Zucc. community was taken as a breakthrough point, and 21 plots with Taxus cuspidata distribution were selected for community survey. From the sampled plant and environmental data, the characteristics and main influencing factors of Taxus cuspidata communities were studied by systematic clustering, RDA analysis, and variance decomposition. Results showed that: (1) A total of 107 species belonging to 90 genera and 48 families were recorded, and Taxus cuspidata communities exhibited high species richness. The Taxus cuspidata communities could be divided into four types: i.e., Pinus koraiensis-Tilia amurensis forest, Pinus koraiensis-Picea jezoensis-Abies nephrolepis forest, Pinus koraiensis-Acer forest, and Pinus koraiensis-Betula costata forest. (2) Temperature, precipitation, forest type, and soil pH significantly affected species composition of the Taxus cuspidata communities, with overall temperature being the most significant factor.However, the main effects of environmental factors in different forest types were different. (3) Climatic, topographic, soil, and biological factors jointly explained 49.85% of Taxus cuspidata community distribution. Among the above factors, topographic and soil factors had the largest individual explanatory power (15.70%), followed by climatic (14.96%) and biological factors (9.79%). In conclusion, due to both natural and human interference, the Taxus cuspidata communities are diverse, and the population characteristics of Taxus cuspidata is different among the communities. Taxus cuspidata is mainly distributed in Pinus koraiensis-Tilia amurensis and Pinus koraiensis-Picea jezoensis-Abies nephrolepis forests, and the other two community types have a guiding significance for Taxus cuspidata reintroduction protection. In addition, different protection measures should be considered for the different community types.
  • [1]
    李俊清. 森林生态学[M]. 北京:高等教育出版社, 2010.
    [2]
    杨国栋, 季芯悦, 陈林, 钟育谦, 翟飞飞, 伊贤贵, 王贤荣. 基于SOM的野生秤锤树群落的空间分布和环境解释[J]. 生物多样性, 2018, 26(12):1268-1276.

    Yang GD, Ji XY, Chen L, Zhong YQ, Zhai FF, Yi XG, Wang XR. Spatial distribution and environmental interpretation of wild Sinojackia xylocarpa communities based on self-organizing map (SOM)[J]. Biodiversity Science, 2018, 26(12):1268-1276.
    [3]
    姚帅臣, 王景升, 丁陆彬, 包小婷, 李超, 王彤, 等. 拉萨河谷草地群落的数量分类与排序[J]. 生态学报, 2018, 38(13):4779-4788.

    Yao SC, Wang JS, Ding LB, Bao XT, Li C, Wang T, et al. Quantitative classification and ordination of grassland communities in Lhasa River Valley[J]. Acta Ecologica Sinica, 2018, 38(13):4779-4788.
    [4]
    刘晔, 许玥, 石松林, 彭培好, 沈泽昊. 金沙江干旱河谷植物群落的数量分类及其结构分异的环境解释[J]. 生物多样性, 2016, 24(4):407-420.

    Liu Y, Xu Y, Shi SL, Peng PH, Shen ZH. Quantitative classification and environmental interpretations for the structural differentiation of the plant communities in the dry valley of Jinshajiang River[J]. Biodiversity Science, 2016, 24(4):407-420.
    [5]
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents:Ⅵ. The isolation and antitumor agent from Taxus brevifolia[J]. J Am Chem Soc, 1971, 93(9):2325-2327.
    [6]
    费永俊, 雷泽湘, 余昌均, 陈中义, 何佶. 中国红豆杉属植物的濒危原因[J]. 自然资源学报, 1997(5):61-65.

    Fei YJ, Lei ZX, Yu CJ, Chen ZY, He J. The endangered causes of chinese Taxus and countermeasures for sustai-nable utilization[J]. Journal of Natural Resources, 1997(5):61-65.
    [7]
    臧润国,董鸣,李俊清,陈小勇,曾宋君,江明喜,等. 典型极小种群野生植物保护与恢复技术研究[J]. 生态学报, 2016, 36(22):7130-7135.

    Zang RG, Dong M, Li JQ, Chen XY, Zeng SJ, Jiang MX, et al. Conservation and restoration for typical critically endangered wild plants with extremely small population[J]. Acta Ecologica Sinica, 2016, 36(22):7130-7135.
    [8]
    Park SY, Lee CK, Bae YS. A tetrasaccharide isolated from the fruits of Taxus cuspata[J]. Pharm Biol, 2012, 50(5):592-592.
    [9]
    Lee CG, Lee J, Lee DG, Kim JW, Alnaeeli M, Park YI, Park JK. Immunostimulating activity of polyhydric alcohol isolated from Taxus cuspidata[J]. Int J Biol Macromol, 2016, 85:505-513.
    [10]
    Zhao Y, Wang Z, Wei HX, Bao YJ, Gu P. Effect of prolonged photoperiod on morphology, biomass accumulation and nutrient utilization in post transplant Taxus cuspidata seedlings[J]. Pak J Bot, 2017, 49(4):1285-1290.
    [11]
    李威,杨德光,牟尧,杨自超,王雪蓉,刘彤彤,李淑敏. 去遮荫后东北红豆杉幼苗和幼树光合特性对比[J]. 林业科学, 2018, 54(2):179-185.

    Li W, Yang DG, Mu Y, Yang ZC, Wang XR, Liu TT, Li SM. Photosynthesis and chlorophyll fluorescence characteristics of seedlings and saplings of Taxus cuspidata after removing shade[J]. Scientia Silvae Sinicae, 2018, 54(2):179-185.
    [12]
    吴榜华,臧润国,张启昌,李德志,郝广明. 东北红豆杉种群结构与空间分布型的分析[J]. 吉林林学院学报, 1993, 9(2):1-6.

    Wu BH, Zang RG, Zhang QC, Li DZ, Hao GM. Analysis on the population structure and distribution pattern of Taxus cuspidata[J]. Journal of Jilin Forestry University, 1993, 9(2):1-6.
    [13]
    刘彤. 天然东北红豆杉种群生态学研究[D]. 哈尔滨:东北林业大学,2007.
    [14]
    周志强,刘彤,袁继连. 黑龙江穆棱天然东北红豆杉种群资源特征研究[J]. 植物生态学报, 2004, 28(4):476-482.

    Zhou ZQ, Liu T, Yaun JL. Population characteristics of yew (Taxus cuspidata) in the Muling Yew Nature Reserve, Heilongjiang Province[J]. Acta Ecologica Sinica, 2004, 28(4):476-482.
    [15]
    吴榜华,戚继忠. 东北红豆杉植物地理学研究[J]. 应用与环境生物学报, 1995(3):219-225.

    Wu BH, Qi JZ. Study on phytogeography of Taxus cuspidata[J]. Chinese Journal of Applied and Environmental Biology, 1995(3):219-225.
    [16]
    方精云,王襄平,沈泽昊,唐志尧,贺金生,于丹,等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6):533-548.

    Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science, 2009, 17(6):533-548.
    [17]
    鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社, 2000.
    [18]
    孙儒泳. 基础生态学[M]. 北京:高等教育出版社, 2002.
    [19]
    张屯金. 数量生态学[M]. 2版. 北京:科学出版社, 2011.
    [20]
    张锦春,王继和,赵明,刘虎俊,廖空太,徐先英. 库姆塔格沙漠南缘荒漠植物群落多样性分析[J]. 植物生态学报, 2006, 30(3):375-382.

    Zhang JC, Wang JH, Zhao M, Liu HJ, Liao KT, Xu XY. Plant community and species diversity in the south fringe of Kumtag Dersert[J]. Chinese Journal of Plant Ecology, 2006, 30(3):375-382.
    [21]
    赵小娜, 秦浩, 张峰. 山西文峪河上中游森林群落多样性[J]. 生态学报, 2017, 27(4):1093-1102.

    Zhao XN, Qin H, Zhang F. Diversity of forest communities in the upstream and middle reaches of the Wenyu River watershed, Shanxi[J]. Acta Ecologica Sinica, 2017, 27(4):1093-1102.
    [22]
    Borcard D, Gillet F, Legendre P. 数量生态学:R语言的应用[M]. 赖江山译. 北京:高等教育出版社, 2014.
    [23]
    余敏,周志勇,康峰峰,欧阳帅,米湘成,孙建新. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5):373-383.

    Yu M, Zhou ZY, Kang FF, Ouyang S, Mi XC, Sun JX. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China[J]. Chinese Journal of Plant Ecology, 2013, 37(5):373-383.
    [24]
    陈杰,龙婷,杨蓝,王寅,徐超,李景文. 东北红豆杉生境适宜性评价[J]. 北京林业大学学报, 2019, 41(4):51-59.

    Chen J, Long T, Yang L, Wang Y, Xu C, Li JW. Habitat suitability assessment of Taxus cuspidata[J]. Journal of Beijing Forestry University, 2019, 41(4):51-59.
    [25]
    吴榜华, 张启昌, 李德志, 臧润国. 东北红豆杉资源状况及生长规律的初步调查[J]. 吉林林学院学报, 1993(2):11-16.

    Wu BH, Zhang QC, Li DZ, Zang RG. A preliminary investigation on resource condition and growth regularity of Taxus cuspidata[J]. Journal of Jilin Forestry University, 1993(2):11-16.
    [26]
    李云灵. 东北红豆杉种间关系研究[D]. 哈尔滨:东北林业大学, 2008.
    [27]
    马全林, 张德奎, 袁宏波, 郑庆钟, 丁峰, 张锦春, 等. 乌兰布和沙漠植被数量分类及环境解释[J]. 干旱区资源与环境, 2019, 33(9):160-167.

    Ma QL, Zhang DK, Yuan HB, Zheng QZ, Ding F, Zhang JC, et al. Numerical classification and environmental interpretation of desert vegetation in the Ulan Buh Desert[J]. Journal of Arid Land Resources and Environment, 2019, 33(9):160-167.
    [28]
    杨国栋, 钱慧蓉, 陈林, 王贤荣. 中国特有植物短丝木犀(Osmanthus serrulatus Rehd.)群落结构及其环境解释[J]. 生态学报, 2018, 38(9):3059-3068.

    Yang GD, Qian HR, Chen L, Wang XR. Analysis of community structure of Osmanthus serrulatus based on TWINSPAN classification and DCCA sequencing[J]. Acta Ecologica Sinica, 2018, 38(9):3059-3068.
    [29]
    张志敏, 杨国栋, 谢梦梦, 钟育谦, 翟飞飞, 王贤荣, 伊贤贵. 江苏龙池山自然保护区红楠(Machilus thunbergii)生存群落结构及其环境解释[J].生态学杂志, 2019, 38(6):1637-1645.

    Zhang ZM, Yang GD, Xie MM, Zhong YQ, Zhai FF, Wang XR, Yi XG. Community structure and environmental interpretation of Machilus thunbergii in Mountain Longchi, Jiangsu Province[J]. Chinese Journal of Ecology, 2019, 38(6):1637-1645.
    [30]
    朱羚,金一兰,丛日慧,刘庆福,丁勇,张庆. 环境因素及种间竞争在群落多样性格局中的作用[J]. 干旱区研究, 2018, 35(6):1427-1435.

    Zhu L, Jin YL, Cong RH, Liu QF, Ding Y, Zhang Q. Effects of environmental factors and interspecific competition in community biodiversity pattern[J]. Arid Zone Research, 2018, 35(6):1427-1435.
    [31]
    牛莉芹. 人类干扰对五台山森林群落结构的影响[J]. 应用与环境生物学报, 2019, 25(2):300-312.

    Niu LQ. Effects of anthropogenic disturbance on forest community structure in Wutai Mountain, China[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(2):300-312.
    [32]
    Vencurik J, Bosela M, Sedmakova D, Pittner J, Kucbel S, Jaloviar P, et al. Tree species diversity facilitates conservation efforts of European yew[J]. Biodivers Conserv, 2019, 28(4):791-810.
  • Related Articles

    [1]Feng Dan-Dan, Deng Lei, Wang Zu-Peng, Pan Hui, Li Wen-Yi, Zhong Cai-Hong, Li Li. Research progress on host-induced gene silencing to promote plant resistance against fungal disease[J]. Plant Science Journal, 2021, 39(3): 316-323. DOI: 10.11913/PSJ.2095-0837.2021.30316
    [2]Bai Yi-Xiong, Zhao Xiao-Hong, Yao Xiao-Hua, Li Xin, Wu Kun-Lun. Research progress on crop lodging resistance-related traits and mechanism of signal transduction[J]. Plant Science Journal, 2021, 39(1): 102-109. DOI: 10.11913/PSJ.2095-0837.2021.10102
    [3]Wei Tong-Lu, Guo Da-Yong, Xie Zong-Zhou, Liu Ji-Hong. Current advancement on stress resistance and its underlying mechanisms in tetraploid plants[J]. Plant Science Journal, 2017, 35(3): 435-443. DOI: 10.11913/PSJ.2095-0837.2017.30435
    [4]DANG Feng-Feng, LIN Jin-Hui, CHEN Cheng-Cong, CHEN Yong-Ping, HUANG Guo-Dong, GUAN De-Yi, HE Shui-Lin. Overexpression of CaNPR1 Enhances Resistance to Ralstonia solanacearum Infection in Tobacco[J]. Plant Science Journal, 2012, 30(5): 494-500. DOI: 10.3724/SP.J.1142.2012.50494
    [5]CHI Hong, YUE Ming, LIU Xiao. Physiological Effects on UV-B Resistance of Wheat(Triticum aestivum L.)Seedlings Mediated by Jasmonic Acid[J]. Plant Science Journal, 2011, 29(6): 718-726.
    [6]WANG Feng, LU Yong-En, LI Han-Xia. Kanamycin Resistance of Several Vegetable Brassicas[J]. Plant Science Journal, 2006, 24(4): 377-380.
    [7]ZHANG Hong-Ming, ZHAO Shi, GAO Rong-Fu. Molecular Properties of Phytochromes and Their Signalling Mechanism[J]. Plant Science Journal, 2003, 21(6): 537-543.
    [8]Li Suoping, Meng Zhaojiang. THE ADVANCE IN ALIEN CHROMOSOMAL SEGMENTS AND IT'S RESISTANCE GENES TRANSFER IN WHEAT[J]. Plant Science Journal, 1999, 17(S1): 25-30.
    [9]Li Jing, Li Rongqian, Zeng Zishen, Wang Jianbo. MICROSCOPICAL AND ULTRASTRUCTURAL STUDIES ON THE RESISTANCE OF CUCUMBER TO PSEUDOPERONOSPORA CUBENSIS[J]. Plant Science Journal, 1991, 9(3): 209-214.
    [10]Xu Naiyu. RESISTANT PLANTS BREEDING BY MEANS OF CELL/TISSUE CULTURE[J]. Plant Science Journal, 1987, 5(3): 299-302.
  • Cited by

    Periodical cited type(11)

    1. 王世彤,宋帅帅,李杰华,杨腾,何艺琴,魏新增,江明喜. 极小种群野生植物黄梅秤锤树的光合生理特性. 生态学杂志. 2024(03): 701-708 .
    2. 魏新增,蒲云海,史红文,肖之强,江明喜. 湖北省国家重点保护野生植物分布与研究进展. 广西植物. 2024(11): 2000-2009 .
    3. 常二梅,刘建锋,黄跃宁,李红丽,单冰燕,江泽平,赵秀莲. 岷江柏野生居群和迁地保护居群的遗传多样性比较. 植物研究. 2022(05): 772-779 .
    4. 许玥,臧润国. 中国极小种群野生植物保护理论与实践研究进展. 生物多样性. 2022(10): 84-105 .
    5. 江全,郑旭,张康,展阳,唐罗忠. 秤锤树的种实基本性状与种子休眠机理研究. 西南林业大学学报(自然科学). 2021(02): 145-150 .
    6. 谢春平,刘大伟,吴显坤,薛晓明,南程慧. 基于灰色关联度分析的浙江楠在江苏的适宜引种地评估. 云南农业大学学报(自然科学). 2021(02): 330-337 .
    7. 黄成名,李方俊,苏彩晴,张海玲,李林. 湖北省秤锤树保护性引种试验. 甘肃林业科技. 2020(02): 5-6+27 .
    8. 杨腾,王世彤,魏新增,江明喜. 中国特有属秤锤树属植物的潜在分布区预测. 植物科学学报. 2020(05): 627-635 . 本站查看
    9. 商侃侃,张希金,宋坤. 上海辰山植物园不同生活型木本植物枝叶大小关系的比较. 植物研究. 2020(05): 641-647 .
    10. 张丽,杨小波,农寿千,李东海,李苑菱,宋佳昱. 两种不同保护模式下坡垒种群发育特征. 生态学报. 2019(10): 3740-3748 .
    11. 索南邓登,陈卫东,林鹏程. 青藏高原野生濒危药用植物掌裂兰的生境及濒危因素分析. 广西植物. 2019(09): 1166-1179 .

    Other cited types(3)

Catalog

    Article views (910) PDF downloads (926) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return