Advance Search
Wagutu Godfrey Kinyori, Njeri Henry Kariuki, Fan Xiang-Rong, Chen Yuan-Yuan. Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)[J]. Plant Science Journal, 2020, 38(1): 105-111. DOI: 10.11913/PSJ.2095-0837.2020.10105
Citation: Wagutu Godfrey Kinyori, Njeri Henry Kariuki, Fan Xiang-Rong, Chen Yuan-Yuan. Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)[J]. Plant Science Journal, 2020, 38(1): 105-111. DOI: 10.11913/PSJ.2095-0837.2020.10105

Development and transferability analysis of SSR primers in wild rice Zizania latifolia (Poaceae)

Funds: 

This work was supported by a grant from the Talent Program of Wuhan Botanical Garden, Chinese Academy of Sciences (Y855291B01).

More Information
  • Received Date: April 01, 2019
  • Revised Date: June 14, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • Zizania latifolia Turcz., also known as Manchurian wild rice, is a member of the tribe Oryzeae, and a major wild ecological and genetic resource. In this study, nuclear SSR primers were developed in silico based on part of the existing genome sequences of Z. latifolia. Five wild populations of the species from different regions across China were selected to screen 64 developed primers. Results showed that 15 primer pairs were polymorphic in at least one population. In addition, we identified a total of 84 alleles, with an average of 5.6 alleles per locus. For the different populations, the level of observed and expected heterozygosity ranged from 0.000 to 0.941 and 0.072 to 0.625, respectively. Relatively high genetic differentiation between populations (FST=0.432) was found, as evidenced by low levels of gene flow (Nm=0.576) among populations. These newly developed markers will facilitate further study of the level and pattern of genetic diversity, and the development of germplasm resource conservation strategies for natural extant Z. latifolia populations. In the cross-species transferability test, eight and nine of the 15 loci were successfully amplified in Oryza sativa L. and O. rufipogon Griff., respectively.
  • [1]
    Chen Y, Long L, Lin X, Guo W, Liu B. Isolation and characterization of a set of disease resistance-gene analogs (RGAs) from wild rice, Zizania latifolia Griseb. I. Introgression, copy number lability, sequence change, and DNA methylation alteration in several rice-Zizania introgression lines[J]. Genome, 2006, 49(2):150-158.
    [2]
    Terrell E, Peterson P, Reveal J, Duvall M. Taxonomy of North American species of Zizania (Poaceae)[J]. Sida, 1997, 17:533-549.
    [3]
    Xu X, Walters C, Antolin MF, Alexander ML, Lutz S, et al. Phylogeny and biogeography of the eastern Asian-North American disjunct wild-rice genus (Zizania L., Poaceae)[J]. Mol Phylogenet Evol, 2010, 55(3):1008-1017.
    [4]
    Peng SL, You WH, Qi G, Yang FL. Nitrogen and phosphorus uptake capacity and resource use of aquatic vegetables floating bed in the eutrophicated lake[C/OL]//2013 Third International Conference on Intelligent System Design and Engineering Applications. (2013-01-01)[2019-09-05]. DOI: 10.1109/ISDEA.2012.237.
    [5]
    Chen YY, Liu Y, Fan XR, Li W, Liu YL. Landscape-scale genetic structure of wild rice Zizania latifolia:The roles of rivers, mountains and fragmentation[J]. Front Ecol Evol, 2017, 5:17.
    [6]
    Guo HB, Li SM, Peng J, Ke WD. Zizania latifolia Turcz. cultivated in China[J]. Genet Resour Crop Evol, 2007, 54(6):1211-1217.
    [7]
    Chen YY, Chu HJ, Liu H, Liu YL. Abundant genetic diversity of the wild rice Zizania latifolia in central China revealed by microsatellites[J]. Ann Appl Biol, 2012, 161(2):192-201.
    [8]
    Wang HM, Wu GL, Jiang SL, Huang QN, Feng BH, et al. Genetic diversity of Zizania latifolia Griseb. from Poyang lake basin based on SSR and ISSR analysis[J]. J Plant Genet Resour, 2015, 16(1):133-141.
    [9]
    Fan XR, Ren XR, Liu YL, Chen YY. Genetic structure of wild rice Zizania latifolia and the implications for its management in the Sanjiang Plain, Northeast China[J]. Biochem Syst Ecol, 2016, 64:81-88.
    [10]
    Zhao Y, Zhong L, Zhou K, Song Z, Chen J, Rong J. Seed characteristic variations and genetic structure of wild Zizania latifolia along a latitudinal gradient in China:Implications for neo-domestication as a grain crop[J]. AoB Plants, 2018, 10(6):ply072.
    [11]
    Quan Z, Pan L, Ke W, Liu Y, Ding Y. Sixteen polymorphic microsatellite markers from Zizania latifolia Turcz. (Poaceae)[J]. Mol Ecol Resour, 2009, 9(3):887-889.
    [12]
    Guo LB, Qiu J, Han ZJ, Ye ZH, Chen C, et al. A host plant genome (Zizania latifolia) after a century-long endophyte infection[J]. Plant J, 2015, 83(4):600-609.
    [13]
    Li Q, Wan JM. SSRHunter:Development of a local searching software for SSR sites(in Chinese)[J]. Hereditas, 2005, 27:808-810.
    [14]
    Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. FastPCR:An in-silico tool for fast primer and probe design and advanced sequence analysis[J]. Genomics, 2017, 109(3/4):312-319.
    [15]
    Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
    [16]
    Peakall ROD, Smouse PE. GENALEX 6:Genetic analysis in Excel. Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6:288-295.
    [17]
    Goudet J. FSTAT ver 2.9.4, a program to estimate and test gene diversities and fixation indices[EB/OL]. (2005-08-23)[2019-09-05]. https://www2.unil.ch/popgen/softwares/fstat.htm.
    [18]
    Kumar S, Stecher G, Tamura, K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
    [19]
    Hamrick JL, Godt MJW. Effects of life history traits on genetic diversity in plant species[J]. Philos Trans R Soc Lond B Biol Sci, 1996, 351(1345):1291-1298.
    [20]
    Xu XW, Ke WD, Yu XP, Wen J, Ge S. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based onAdh1a sequences[J]. Theor Appl Genet, 2008, 116(6):835-843.
    [21]
    Wright S. Evolution and the Genetics of Populations:the Theory of Gene Frequencies[M]. Illinois:University of Chicago Press, 1969.
  • Related Articles

    [1]Jia Xiande, Lü Haiying, Wu Limei, Yang Yinan, Huang Renhao, Wang Hao, Niu Xin. Response of leaf functional traits and anatomical structure to altitude in Crataegus songarica K. Koch in Tianshan wild fruit forest[J]. Plant Science Journal, 2024, 42(2): 150-159. DOI: 10.11913/PSJ.2095-0837.23157
    [2]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [3]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [4]Li Na, Guo Xue-Min, Li Ming, Bai Lan. Comparison of leaf anatomical structures between female and male Broussonetia papyrifera(L.) Vent.[J]. Plant Science Journal, 2017, 35(2): 164-170. DOI: 10.11913/PSJ.2095-0837.2017.20164
    [5]WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175
    [6]SHEN Shi-Kang, ZHANG Xin-Jun, WU Fu-Qin, YANG Guan-Song, WANG Yue-Hua, SUN Wei-Bang, LIN Ru-Tao. Study on the Anatomical Structures of Rhododendron protistum var. giganteum with an Extremely Small Population[J]. Plant Science Journal, 2016, 34(1): 1-8. DOI: 10.11913/PSJ.2095-0837.2016.10001
    [7]ZHANG Yong-Fu, HAN Li, HUANG He-Ping, CHEN Ze-Bin, REN Zhen, LIU Jia-Ni, PENG Sheng-Jing. Comparisons of Stem Anatomical Structures among Litchi, Longan and Longli[J]. Plant Science Journal, 2014, 32(6): 551-560. DOI: 10.11913/PSJ.2095-0837.2014.60551
    [8]HÖRIYET·Abliz, MAMTIMIN·Sulayman. Anatomical Structure of Eighteen Species of Orthotrichum from Xinjiang[J]. Plant Science Journal, 2014, 32(1): 14-23. DOI: 10.3724/SP.J.1142.2014.10014
    [9]LU Chang, WANG Fang, ZHANG Xiao-Ping. Leaf Comparation on Anatomical Structure and Epidermal Characteristics of Pteroceltis tatarinowii Maxim. in Different Areas[J]. Plant Science Journal, 2012, 30(4): 337-351. DOI: 10.3724/SP.J.1142.2012.40337
    [10]TAO Yong, JIANG Ming-Xi. Study on Anatomical Structure Adaptation of Stem of Alternanthera philoxeroides (Mart.) Griseb to Various Water Condition[J]. Plant Science Journal, 2004, 22(1): 65-71.
  • Cited by

    Periodical cited type(17)

    1. 徐磊,胥晓,刘沁松. 外源水杨酸对盐胁迫下珙桐幼苗抗氧化系统和基因表达的影响. 植物研究. 2023(04): 572-581 .
    2. 张爱慧,冷欣兰,袁颖辉,任慧羚,陈雪琼,朱士农. 5-ALA对NaCl胁迫下丝瓜幼苗生长及生理特性的影响. 江苏农业科学. 2023(13): 137-141 .
    3. 朱普生,刘慧英,曹泽,丛蕴郸. 番茄GAPDH基因家族的鉴定及其在GSNO调控番茄盐胁迫中的响应. 分子植物育种. 2023(23): 7682-7688 .
    4. 张雪蒙,亢超,滕元旭,陈静怡,崔辉梅. 外源硫化氢和水杨酸对盐胁迫下加工番茄幼苗生长与生理特性的影响. 西北植物学报. 2022(02): 255-262 .
    5. 吴莺,张淑英,陈明媛,王梦柯. SNP对盐胁迫下棉花幼苗光合抑制及氧化损伤的缓解效应. 植物生理学报. 2022(04): 757-766 .
    6. 左月桃,董玲,任晓松,刘赵月,左师宇,李晶. 外源褪黑素对盐碱胁迫下小黑麦种子萌发幼苗生长、抗氧化能力的影响. 麦类作物学报. 2022(01): 90-99 .
    7. 赵野,刘威,王贺,吴华鑫,肖雅楠,闫永庆. 外源CaCl_2对盐胁迫下西伯利亚白刺活性氧代谢的影响. 植物生理学报. 2021(05): 1105-1112 .
    8. 程园,李灿婴,侯佳宝,李雪,王晓涵,葛永红. 采后硝普钠处理对南果梨果实贮藏品质和细胞壁降解酶的影响. 食品科学. 2020(01): 252-257 .
    9. 耿贵,李任任,吕春华,於丽华,王宇光. 外源调节物质对盐胁迫下植物生长调控研究进展. 中国农学通报. 2020(24): 85-90 .
    10. 刘赵月,李蕊彤,李晶,顾万荣,左师宇,任晓松,左月桃,魏湜. 盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响. 江苏农业学报. 2020(04): 842-850 .
    11. 赵宝泉,邢锦城,王静,朱小梅,刘冲,洪立洲. 水杨酸对盐胁迫下杭白菊幼苗生长和生理特性的影响. 吉林农业大学学报. 2020(04): 370-379 .
    12. 普凌,赵鑫,王艇越,侯浩南,张毅. 等渗盐胁迫对番茄幼苗生长和生理特性的影响. 陕西农业科学. 2019(05): 35-38 .
    13. 蒋景龙,沈季雪,李丽. 外源H_2O_2对盐胁迫下黄瓜幼苗氧化胁迫及抗氧化系统的影响. 西北农业学报. 2019(06): 998-1007 .
    14. 孙德智,杨恒山,张庆国,范富,苏雅乐其其格,彭靖,韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用. 浙江农业学报. 2019(08): 1286-1294 .
    15. 李翀,王杰,贾赵辉,程雪飞,彭孝楠,陈颖,张金池. 南林‘895’杂交杨组培苗对NaCl胁迫的生理响应. 安徽农业大学学报. 2019(06): 961-967 .
    16. 李海萍. 盐胁迫及外源物质对植物抗盐性影响的研究进展. 青海农技推广. 2018(04): 48-50 .
    17. 董亚茹,赵东晓,杜建勋,孙景诗,陈传杰,王照红. 外源NO对NaCl胁迫下桑树种子萌发及幼苗生理生化特性的影响. 蚕业科学. 2018(06): 821-827 .

    Other cited types(16)

Catalog

    Article views (617) PDF downloads (651) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return