Advance Search
Yao Cheng-Cheng, Wang Jun-Chen, Hu Ji-Wen, Xiao Yao, Yang Gui-Juan, Wang Jun-Hui, Zhai Wen-Ji, Ma Wen-Jun. Genetic variation of growth and leaf phenotypic traits of Toona sinensis (A. Juss.) Roem. germplasms[J]. Plant Science Journal, 2020, 38(1): 112-122. DOI: 10.11913/PSJ.2095-0837.2020.10112
Citation: Yao Cheng-Cheng, Wang Jun-Chen, Hu Ji-Wen, Xiao Yao, Yang Gui-Juan, Wang Jun-Hui, Zhai Wen-Ji, Ma Wen-Jun. Genetic variation of growth and leaf phenotypic traits of Toona sinensis (A. Juss.) Roem. germplasms[J]. Plant Science Journal, 2020, 38(1): 112-122. DOI: 10.11913/PSJ.2095-0837.2020.10112

Genetic variation of growth and leaf phenotypic traits of Toona sinensis (A. Juss.) Roem. germplasms

Funds: 

This work was supported by a grant from the National Key R & D Program of China (2016YFD0600604).

More Information
  • Received Date: June 01, 2019
  • Revised Date: June 29, 2019
  • Available Online: October 31, 2022
  • Published Date: February 27, 2020
  • Using 84 germplasms of Toona sinensis (A. Juss.) Roem., two growth traits and 18 leaf traits (including six quality traits and 12 quantitative traits) were determined. Results showed that the six leaf quality traits of the T. sinensis germplasms were rich in variability and showed polymorphism, and the main phenotypes of single traits were 1-2. The differences among germplasms in regard to 14 quantitative traits, including height, diameter, and leaf traits, were highly significant at the 0.01 level, and the genetic variance component of the other traits was larger than the environmental variance component, except for diameter, indicating that such traits were mainly controlled genetically. The average phenotypic variation coefficient of the 14 quantitative traits was 20.35% and the average genetic variation coefficient was 16.36%. Based on phenotypic and genetic variation coefficients, petiole length showed the greatest variation among traits, whereas leaf angle was the most stable. The difference between the genetic and phenotypic variation coefficients of the traits (except ground diameter) was less than 7%. The Shannon-Weaver genetic diversity index of different traits was similar (1.892-2.069), indicating that the T. sinensis germplasms exhibited high genetic diversity and a good basis for genetic improvement. The T. sinensis germplasms were divided into five groups based on cluster analysis. Group Ⅰ was characterized by strong growth and low specific leaf weight; group Ⅱ grew relatively fast and the leaves were relatively large; group Ⅲ contained the largest number of germplasms, which showed slow growth and large specific leaf weight; group Ⅳ was characterized by large leaves and multi-leaf type; and, group Ⅴ was characterized by small and sparse leaves. Thus, this study showed that the T. sinensis germplasm was rich in genetic variation and diversity and could provide abundant materials for genetic breeding and improvement.
  • [1]
    周祥斌, 周玮, 林玮, 周鹏, 陈晓阳. 14个香椿种源生长节律的观测与分析[J]. 华南农业大学学报, 2016, 37(5):84-90.

    Zhou XB, Zhou W, Lin W, Zhou P, Chen XY. Observation and analysis on growth rhythms of Toona sinensis of 14 provenances[J]. Journal of South China Agricultural University, 2016, 37(5):84-90.
    [2]
    胡继文, 肖遥, 翟文继, 卢楠, 沈元勤, 等. 香椿花粉离体萌发与花粉生活力研究[J]. 林业科学研究, 2019, 32(2):160-165.

    Hu JW, Xiao Y, Zhai WJ, Lu N, Shen YQ, et al. Research on pollen germination and vigour of Toona sinensis[J]. Forest Research, 2019, 32(2):160-165.
    [3]
    杨超臣, 张婷, 朱天然, 曹丽仙, 李建安. 香椿种子无菌苗再生体系的建立[J]. 经济林研究, 2018, 36(3):114-119.

    Yang CC, Zhang T, Zhu TR, Cao LX, Li JA. Establishment of rapid propagation for sterile seedlings of Toona sinensis by tissue culture[J]. Nonwood Forest Research, 2018, 36(3):114-119.
    [4]
    张海燕. 香椿种源生长差异性分析及早期评价[J]. 中南林业科技大学学报, 2017, 37(1):38-42.

    Zhang HY. Analysis and evaluation of growth difference of different Toona sinensis provenances[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1):38-42.
    [5]
    陈建, 袁伟刚, 肖兴翠, 杨勇智, 郭洪英, 等. 香椿优树半同胞家系苗期测定及家系选择[J]. 四川林业科技, 2017, 38(5):8-12.

    Chen J, Yuan WG, Xiao XC, Yang YZ, Guo HY, et al. Seedling testing and family selection of Toona cillate elite half-sib family[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(5):8-12.
    [6]
    刘军, 陈益泰, 姜景民, 姜荣波, 张海燕, 等. 香椿种源苗期性状变异与原产地生态因子典型相关分析[J]. 东北林业大学学报, 2010, 38(11):27-29.

    Liu J, Chen YT, Jiang JM, Jiang RB, Zhang HY, et al. Canonical correlation analysis between trait variation of Toona sinensis seedlings from different provenances and ecological factors in their original regions[J]. Journal of Northeast Forestry University, 2010, 38(11):27-29.
    [7]
    李洪果, 陈达镇, 许靖诗, 刘光金, 庞晓东, 等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4):69-83.

    Li HG, Chen DZ, Xu JS, Liu GJ, Pang XD, et al. Phenotypic diversity and variation in natural populations of Erythrophleum fordii, an endangered plant species[J]. Scientia Silvae Sinicae, 2019, 55(4):69-83.
    [8]
    李峰卿, 周志春, 楚秀丽, 陈焕伟, 邓章文. 红豆树优树子代遗传多样性及与生长相关性分析[J]. 林业科学研究, 2018, 31(1):42-50.

    Li FQ, Zhou ZC, Chu XL, Chen HW, Deng ZW. Analysis of genetic diversity among progenies from plus trees of Ormosia hosiei and its correlation with growth[J]. Forest Research, 2018, 31(1):42-50.
    [9]
    王明麻. 林木遗传育种学[M]. 北京:中国林业出版社, 2001.
    [10]
    吴军, 钟志真, 楼君, 余峰, 余裕龙, 等. 香椿天然群体种实性状表型多样性研究[J]. 江西农业大学学报, 2018, 40(2):248-256.

    Wu J, Zhong ZZ, Lou J, Yu YL, Fu GL, et al. A study on phenotypic diversity of cone and seed in natural populations of Toona sinensis[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(2):248-256.
    [11]
    Xing PY, Liu T, Song ZQ, Li XF. Genetic diversity of Toona sinensis Roem. in China revealed by ISSR and SRAP markers[J]. Genet Mol Res, 2016, 15(3):15038387.
    [12]
    陈倩倩, 荣丽媛, 邵紫君, 刘甜, 魏蕾, 宋振巧. 利用SRAP和EST-SSR分析香椿资源的遗传多样性[J]. 园艺学报, 2018, 45(5):967-976.

    Chen QQ, Rong LY, Shao ZJ, Liu T, Wei L, Song ZQ. Genetic diversity analysis of Toona sinensis germplasms based on SRAP and EST-SSR markers[J]. Acta Horticulturae Sinica, 2018, 45(5):967-976.
    [13]
    万继锋, 杨为海, 曾辉, 邹明宏, 张汉周, 陆超忠. 澳洲坚果种质资源叶片表型多样性分析及其数量分类研究[J]. 热带作物学报, 2017, 38(6):990-997.

    Wan JF, Yang WH, Zhen H, Zou MH, Zhang HZ, Lu CZ. Leaf character diversity analysis and numerical classification of Macadamia spp. germplasm resources[J]. Chinese Journal of Tropical Crops, 2017, 38(6):990-997.
    [14]
    汪洋, 陈文学, 明安觉, 雍军, 宋丛文, 付秋生. 湖北红椿天然种群小叶表型性状变异研究[J]. 植物资源与环境学报, 2019, 28(2):96-105.

    Wang Y, Chen WX, Ming AJ, Yong J, Song CW, Fu QS. Study on variation of leaflet phenotypic traits of natural populations of Toona ciliata in Hubei Province[J]. Journal of Plant Resources and Environment, 2019, 28(2):96-105.
    [15]
    徐斌, 彭莉霞, 杨会肖, 潘文, 张方秋. 杜鹃红山茶叶片主要性状的遗传多样性分析[J]. 植物研究, 2015, 35(5):730-734.

    Xu B, Peng LX, Yang HX, Pan W, Zhang FQ. Genetic diversity analysis for leaf main traits of Camellia azalea[J]. Bulletin of Botanical Research, 2015, 35(5):730-734.
    [16]
    李世娟, 诸叶平, 张红英, 刘升平, 刘海龙, 杜鸣竹. 整株干物质量分配指数模型模拟冬小麦各器官形态参数[J].农业工程学报, 2019, 35(9):155-164.

    Li SJ, Zhu YP, Zhang HY, Liu SP, Liu HL, Du MZ. Simulating winter wheat geometrical parameters of each organ using whole plant dry matter weight distribution index model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9):155-164.
    [17]
    续九如. 林木数量遗传学[M]. 北京:高等教育出版社, 2006.
    [18]
    Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation[J]. J Exp Biol, 2006, 209(12):2362-2367.
    [19]
    肖遥, 麻文俊, 易飞, 杨桂娟, 王秋霞, 等. 滇楸种质生长性状遗传变异及表型性状遗传多样性分析[J]. 植物研究, 2018, 38(6):843-851.

    Xiao Y, Ma WJ, Yi F, Yang GJ, Wang QX, et al. Genetic variation of growth traits and genetic diversity of phenoty-pic traits in Catalpa fargesii f. duclouxii germplasm[J]. Bulletin of Botanical Research, 2018, 38(6):843-851.
    [20]
    李清莹. 火力楠种质资源遗传多样性研究[M]. 北京:中国林业科学研究院, 2018.
    [21]
    梅芳, 王军辉, 贾继文, 赵鲲, 焦云德. 楸树种质生长和叶部性状的遗传多样性[J]. 植物遗传资源学报, 2014, 15(1):206-210.

    Mei F, Wang JH, Jia JW, Zhao K, Jiao YD. Genetic diversity of growth and leaf traits of Catalpa bungei[J]. Journal of Plant Genetic Resources, 2014, 15(1):206-210.
    [22]
    班秋艳, 纪晓明, 余有本, 闫满朝, 胡歆, 等. 陕西茶树种质资源表型性状的遗传多样性研究[J]. 安徽农业大学学报, 2018, 45(4):575-579.

    Ban QY, Ji XM, Yu YB, Yan MZ, Hu X, et al. Genetic diversity of leaf phenotypic traits of tea germplasm resources in Shaanxi[J]. Journal of Anhui Agricultural University, 2018, 45(4):575-579.
    [23]
    Li P, Zhang X, Que QM, Qu WT, Liu MQ, et al. Genetic diversity and population structure of Toona ciliata Roem. based on sequence-related amplified polymorphism (SRAP) markers[J]. Forests, 2015, 6(12):1094-1106.
    [24]
    Zhan X, Li P, Hui W, Deng YW, Gan SM, et al. Genetic diversity and population structure of Toona ciliata revealed by simple sequence repeat markers[J]. Biotechnol Biotec Eq, 2019(5):1-9.
    [25]
    贾继文, 王军辉, 张金凤, 张守攻, 张建国, 赵鲲. 楸树与滇楸种间杂交的初步研究[J]. 林业科学研究, 2010, 23(3):382-386.

    Jia JW, Wang JH, Zhang JF, Zhang SG, Zhang JG, Zhao K. Interspecific hybridization of Catalpa bungei and Catalpa fargesii f. duclouxii[J]. Forest Research, 2010, 23(3):382-386.
    [26]
    方乐成, 夏慧敏, 麻文俊, 张新叶. 基于SSR标记的楸树遗传多样性及核心种质构建[J]. 东北林业大学学报, 2017, 45(8):1-5.

    Fang LC, Xia HM, Ma WJ, Zhang XY. Genetic diversity analysis and primary core collection of Catalpa bungei germplasm with SSR markers[J]. Journal of Northeast Forestry University, 2017, 45(8):1-5.
    [27]
    蒋会兵, 田易萍, 陈林波, 梁名志. 云南茶树地方品种农艺性状与品质性状遗传多样性分析[J]. 植物遗传资源学报, 2013, 14(4):634-640.

    Jiang HB, Tian YP, Chen LB, Liang MZ. Diversity of tea landraces based on agronomic and quality traits in Yunnan Province[J]. Journal of Plant Genetic Resources, 2013, 14(4):634-640.
  • Related Articles

    [1]Liu Fenfen, Mo Liangtuan, Ou Guoteng, Nie Yimei, Niu Tao, Huang Qinjun. Genetic diversity and genetic structure analysis of wild Chinese Rosa roxburghii Tratt. germplasm resources[J]. Plant Science Journal, 2024, 42(3): 350-358. DOI: 10.11913/PSJ.2095-0837.23248
    [2]Zhang Yi, Song Lizhi, Liu Shengjun, Ruan Lin, Wang Xia, Song Jianfeng, Wang Lixia, Xu Qiang. Genetic identification of ‘Changshanhuyou’ (Citrus × aurantium L.) of different ages and propagation types[J]. Plant Science Journal, 2024, 42(2): 191-200. DOI: 10.11913/PSJ.2095-0837.23203
    [3]XIE Ying, YU Hai-yang, PANG Zhong-yi, ZHANG Ming, YU Hai-yang, ZHANG Shi-kai, ZHAO Xi-yang. Phenotypic diversity analysis and superior family selection of seed traits in six Acer species in northeast China[J]. Plant Science Journal, 2021, 39(6): 610-619. DOI: 10.11913/PSJ.2095-0837.2021.60610
    [4]Li Yan, Zhan Lin, Guo Shui-Liang. Genetic and morphological variation patterns of Macromitrium gymnostomum and their geographical backgrounds[J]. Plant Science Journal, 2018, 36(6): 775-783. DOI: 10.11913/PSJ.2095-0837.2018.60775
    [5]LIANG Qiong, ZHANG Yan-Jun, XU Yan-Qun, HUANG Hong-Wen, WANG Ying. Morphological Variations and Genetic Diversity of Epimedium sagittatum Populations[J]. Plant Science Journal, 2013, 31(4): 422-427. DOI: 10.3724/SP.J.1142.2013.40422
    [6]LI Ting-Ting, XU Yue-Jin, WAN Zheng-Jie, ZHANG Yan. Genetic Variation Analyses on Brassica napus×Purple-Caitai Hybrids and Their Backcross Progenies[J]. Plant Science Journal, 2011, 29(2): 188-193.
    [7]LI Zuo-Zhou, BAO Zao-Xia, HUANG Hong-Wen. Allozymic Variation and Genetic Relationship among Gastrodia elata Forms,a Medicinal Plant in China[J]. Plant Science Journal, 2011, 29(1): 64-73.
    [8]MA Rui-Jun, LU Jian-Ying. Genetic Diversity of Ground Cover Plant Potentilla anserina L.[J]. Plant Science Journal, 2010, 28(4): 473-479.
    [9]XIA Jing, GUO You-Hao. ISSR Analysis for Genetic Diversity of Pedicularis dunniana[J]. Plant Science Journal, 2006, 24(6): 565-568.
    [10]CHENG Zhong-Ping, CHEN Zhi-Wei, HU Chun-Gen, DENG Xiu-Xin. Study on Genetic Diversity of Amygdalus persica Based on RAPD Markers[J]. Plant Science Journal, 2002, 20(2): 89-99.

Catalog

    Article views (773) PDF downloads (1069) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return