Advance Search
Wang Yi-Xi, Wen Yin, Liu Hui, Cao Kun-Fang. Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family[J]. Plant Science Journal, 2021, 39(5): 457-466. DOI: 10.11913/PSJ.2095-0837.2021.50457
Citation: Wang Yi-Xi, Wen Yin, Liu Hui, Cao Kun-Fang. Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family[J]. Plant Science Journal, 2021, 39(5): 457-466. DOI: 10.11913/PSJ.2095-0837.2021.50457

Relationship between climatic-niche evolution and species diversification in Annonaceae, a pantropical family

Funds: 

This work was supported by a grant from the Bagui Scholarship (C33600992001).

More Information
  • Received Date: February 28, 2021
  • Revised Date: March 31, 2021
  • Available Online: October 31, 2022
  • Published Date: October 27, 2021
  • Higher species diversity in the tropics is associated with local climate. However, how climate influences species diversification in the tropics remains unclear. To understand the effects of climate on tropical species diversification, we calculated the rate of climatic-niche evolution in the pantropical family Annonaceae. and its correlation with net diversification using phylogenetic comparative analyses. Results showed that:(1) The rate of climatic-niche evolution in Annonaceae was low, but the rates for newly differentiated taxa were relatively high. (2) The evolutionary rates of the lower boundary of the climatic niche (low temperature and low precipitation) were faster than the upper boundary (high temperature and high precipitation). (3) Net diversification rates were closely related to climatic-niche evolution, especially the temperature niche rates. Our results revealed the importance of climatic-niche evolution in species diversification of Annonaceae, providing an important reference for its protection under current climate change.
  • [1]
    Serrano-Serrano ML, Rolland J, Clark JL, Salamin N, Perret M. Hummingbird pollination and the diversification of angiosperms:an old and successful association in Gesneriaceae[J]. Proc R Soc B-Biol Sci, 2017, 284(1852):20162816.
    [2]
    Sun M, Folk RA, Gitzendanner MA, Soltis PS, Chen ZD, et al. Recent accelerated diversification in rosids occurred outside the tropics[J]. Nat Commun, 2020, 11(1):3333.
    [3]
    Castro-Insua A, Gomez-Rodriguez C, Wiens JJ, Baselga A. Climatic niche divergence drives patterns of diversification and richness among mammal families[J]. Sci Rep, 2018, 8(1):8781.
    [4]
    Jaramillo C, Rueda MJ, Mora G. Cenozoic plant diversity in the Neotropics[J]. Science, 2006, 311(5769):1893-1896.
    [5]
    Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis[J]. Proc Natl Acad Sci USA, 2014, 111(22):8125-8130.
    [6]
    Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuuring H. Prediction of neotropical tree and liana species richness from soil and climatic data[J]. Biodivers Conserv, 1995, 4(1):56-90.
    [7]
    Folk RA, Stubbs RL, Mort ME, Cellinese N, Allen JM, et al. Rates of niche and phenotype evolution lag behind diversification in a temperate radiation[J]. Proc Natl Acad Sci USA, 2019, 116(22):10874-10882.
    [8]
    Huang XC, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events[J]. Ann Bot, 2020, 125(1):29-47.
    [9]
    Wright S, Keeling J, Gillman L. The road from Santa Rosalia:A faster tempo of evolution in tropical climates[J]. Proc Natl Acad Sci USA, 2006, 103(20):7718-7722.
    [10]
    Hua X, Wiens JJ. How does climate influence speciation?[J]. Am Nat, 2013, 182(1):1-12.
    [11]
    Klein DR, Bruun HH, Lundgren R, Philipp M. Climate change influences on species interrelationships and distributions in high-Arctic Greenland[J]. Adv Ecol Res, 2008, 40:81-100.
    [12]
    Kozak KH, Wiens JJ. Accelerated rates of climatic-niche evolution underlie rapid species diversification[J]. Ecol Lett, 2010, 13(11):1378-1389.
    [13]
    Cooney CR, Seddon N, Tobias JA. Widespread correlations between climatic niche evolution and species diversification in birds[J]. J Anim Ecol, 2016, 85(4):869-878.
    [14]
    Kozak KH, Wiens JJ. Climatic zonation drives latitudinal variation in speciation mechanisms[J]. Proc R Soc B-Biol Sci, 2007, 274(1628):2995-3003.
    [15]
    Cadena CD, Kozak KH, Gomez JP, Parra JL, Mccain CM, et al. Latitude, elevational climatic zonation and speciation in New World vertebrates[J]. Proc R Soc B-Biol Sci, 2012, 279(1726):194-201.
    [16]
    Moritz C, Patton JL, Schneider CJ, Smith TB. Diversification of rainforest faunas:An integrated molecular approach[J]. Annu Rev Ecol Syst, 2000, 31:533-563.
    [17]
    Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography[J]. Ecol Lett, 2007, 10(4):315-331.
    [18]
    Quintero I, Wiens JJ. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades[J]. Global Ecol Biogeogr, 2013, 22(4):422-432.
    [19]
    Sheldon KS, Yang S, Tewksbury JJ. Climate change and community disassembly:impacts of warming on tropical and temperate montane community structure[J]. Ecol Lett, 2011, 14(12):1191-1200.
    [20]
    Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H, et al. Plants versus animals:Do they deal with stress in different ways?[J]. Integr Comp Biol, 2002, 42(3):415-423.
    [21]
    Liu H, Ye Q, Wiens JJ. Climatic-niche evolution follows similar rules in plants and animals[J]. Nat Ecol Evol, 2020, 4(5):753-763.
    [22]
    Xue B, Guo X, Landis JB, Sun M, Tang CC, et al. Acce-lerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae[J]. Mol Phylogen Evol, 2020, 142:106659.
    [23]
    Thomas DC, Chatrou LW, Stull GW, Johnson DM, Harris DJ, et al. The historical origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant family Annonaceae[J]. Perspect Plant Ecol Evol Syst, 2015, 17(1):1-16.
    [24]
    Guo X, Tang CC, Thomas DC, Couvreur TLP, Saunders RMK. A mega-phylogeny of the Annonaceae:taxonomic placement of five enigmatic genera and support for a new tribe, Phoenicantheae[J]. Sci Rep, 2017, 7:7323.
    [25]
    Punyasena SW, Eshel G, Mcelwain JC. The influence of climate on the spatial patterning of Neotropical plant families[J]. J Biogeogr, 2008, 35(1):117-130.
    [26]
    Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, et al. Early evolutionary history of the flowering plant family Annonaceae:steady diversification and boreotropical geodispersal[J]. J Biogeogr, 2011, 38(4):664-680.
    [27]
    Erkens RHJ, Chatrou LW, Maas JW, van der Niet T, Savolainen V. A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America[J]. Mol Phylogen Evol, 2007, 44(1):399-411.
    [28]
    Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314.
    [29]
    Magallon S, Gomez-Acevedo S, Sanchez-Reyes LL, Hernandez-Hernandez T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity[J]. New Phytol, 2015, 207(2):437-453.
    [30]
    Jin Y, Qian HV.PhyloMaker:an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359.
    [31]
    Silva MD, Funch LS, Da Silva LB, Cardoso D. A phylogenetic and functional perspective on the origin and evolutionary shifts of growth ring anatomical markers in seed plants[J]. Biol Rev, 2021, 96:842-876.
    [32]
    Cubino JP, Lososova Z, Bonari G, Agrillo E, Attorre F, et al. Phylogenetic structure of European forest vegetation[J]. J Biogeogr, 2021, 48(4):903-916.
    [33]
    Song HJ, Ordonez A, Svenning JC, Qian H, Yin X, et al. Regional disparity in extinction risk:Comparison of disjunct plant genera between eastern Asia and eastern North America[J]. Global Change Biol, 2021, 27(9):1904-1914.
    [34]
    Paradis E, Claude J, Strimmer K. APE:Analyses of phylogenetics and evolution in R language[J]. Bioinforma-tics, 2004, 20(2):289-290.
    [35]
    Qu YF, Wiens JJ. Higher temperatures lower rates of physiological and niche evolution[J]. Proc R Soc B-Biol Sci, 2020, 287(1931):20200823.
    [36]
    Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees[J]. PLoS One, 2014, 9(2):e89543.
    [37]
    Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, et al. BAMMtools:an R package for the analysis of evolutio-nary dynamics on phylogenetic trees[J]. Methods Ecol Evol, 2014, 5(7):701-707.
    [38]
    Jezkova T, Wiens JJ. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change[J]. Proc R Soc B-Biol Sci, 2016, 283(1843):9.
    [39]
    Jump AS, Penuelas J. Running to stand still:adaptation and the response of plants to rapid climate change[J]. Ecol Lett, 2005, 8(9):1010-1020.
    [40]
    Sunday JM, Bates AE, Dulvy NK. Global analysis of thermal tolerance and latitude in ectotherms[J]. Proc R Soc B-Biol Sci, 2011, 278(1713):1823-1830.
    [41]
    Wen Y, Qin DW, Leng B, Zhu YF, Cao KF. The physiological cold tolerance of warm-climate plants is correlated with their latitudinal range limit[J]. Biol Lett, 2018, 14(8):20180277.
    [42]
    Chen YJ, Cao KF, Schnitzer SA, Fan ZX, Zhang JL, Bongers F. Water-use advantage for lianas over trees in tropical seasonal forests[J]. New Phytol, 2015, 205(1):128-136.
    [43]
    Erkens RHJ, Chatrou LW, Couvreur TLP. Radiations and key innovations in an early branching angiosperm lineage (Annonaceae; Magnoliales)[J]. Bot J Linn Soc, 2012, 169(1):117-134.
    [44]
    文印. 基部被子植物水力结构进化及其与光合的关联——几个案例研究[D]. 南宁:广西大学, 2019.
  • Related Articles

    [1]Jiang Hong-Sheng, Liao Zu-Ying, Li Wei. Photosynthetic inorganic carbon utilization strategies and their ecological adaptability in aquatic plants[J]. Plant Science Journal, 2023, 41(6): 847-856. DOI: 10.11913/PSJ.2095-0837.23171
    [2]Luo Guang-Ling, Liao Hai-Min, Hu Guo-Xiong. Anatomical structures of vegetative organs of Salvia sonchifolia C. Y. Wu and S.petrophila G. X. Hu, E. D. Liu & Yan Liu (Lamiaceae) and their ecological adaptability[J]. Plant Science Journal, 2022, 40(5): 598-609. DOI: 10.11913/PSJ.2095-0837.2022.50598
    [3]WANG Hai-ling, XIANG Wei, ZHU Shi-dan, ZHAO Hao-yang, DUAN Wei-xing, ZHU Jun-jie. Correlation between leaf structural traits and cold resistance in Saccharum officinarum L.[J]. Plant Science Journal, 2021, 39(6): 672-680. DOI: 10.11913/PSJ.2095-0837.2021.60672
    [4]Jiang Ya-Ting, Duan Guo-Min, Tian Min, Wang Cai-Xia, Zhang Ying. Anatomical structure of the vegetative organs of Calanthe tsoongiana and their ecological adaptation[J]. Plant Science Journal, 2019, 37(3): 271-279. DOI: 10.11913/PSJ.2095-0837.2019.30271
    [5]Liu Xiong-Sheng, Xiao Yu-Fei, Jiang Yi, Li Juan, Lin Jian-Yong, Liang Rui-Long. Anatomical structures of the vegetative organs of Phoebe bournei (Hemsl.) Yang and ecological adaptability[J]. Plant Science Journal, 2018, 36(2): 153-161. DOI: 10.11913/PSJ.2095-0837.2018.20153
    [6]WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175
    [7]YANG Zhi-Jian, FENG Jin-Ling, CHEN Hui. Study on the Anatomical Structures in Development of the Nurse Seed Grafted Union of Camellia oleifera[J]. Plant Science Journal, 2013, 31(3): 313-320. DOI: 10.3724/SP.J.1142.2013.30313
    [8]LI Na, KANG Jie-Fang, YUAN Qin-Qin, WANG Zhe-Zhi. Morphological Structure of Vegetative Organs and Histochemical Localization in Chloranthus multistachys Pei[J]. Plant Science Journal, 2011, 1(4): 507-511.
    [9]TAO Yong, JIANG Ming-Xi. Study on Anatomical Structure Adaptation of Stem of Alternanthera philoxeroides (Mart.) Griseb to Various Water Condition[J]. Plant Science Journal, 2004, 22(1): 65-71.
    [10]LI Zhi-Jun, YU Jun, DUAN Huang-Jin, XU Ya-Li. The Anatomical Study on Vegetative Organs and Adventitious Buds of Convolvulus arvensis[J]. Plant Science Journal, 2002, 20(3): 185-187.
  • Cited by

    Periodical cited type(11)

    1. 张雨晨,陈绪辉,李珂佳,刘宝,吴宇飞,郑世群. 珍稀植物江南油杉群落多样性和生态位特征分析. 西北林学院学报. 2025(02): 122-131 .
    2. 唐双龙,陈时鑫,王煜,马丹炜,杨世辉,聂申明,扎西泽里,田正友. 中国特有种大理白前对高寒环境的形态适应特征. 植物研究. 2024(03): 389-399 .
    3. 林碧华,陈绪辉,罗敏贤,陈泽平,张雨晨,刘宝,刘益鹏,郑世群. 珍稀濒危植物江南油杉群落区系与种群动态分析. 西北林学院学报. 2024(04): 71-78 .
    4. 陈绪辉,叶宝鉴,潘标志,林碧华,罗敏贤,肖丽芳,刘宝,何宗明,郑世群. 珍稀濒危植物江南油杉群落乔木层主要树种种间关联性分析. 热带亚热带植物学报. 2023(01): 21-30 .
    5. 赵欣,卢海峰,钱程,胡雅飞,刘大林,王琳,李新娥. 紫花苜蓿叶面积和叶解剖结构对盐胁迫的响应. 江苏农业科学. 2023(19): 145-152 .
    6. 张培,庞圣江,刘士玲,谌红辉,段润梅,曾琪瑶. 遮荫对江南油杉幼苗生长和叶绿素荧光参数的影响. 西北植物学报. 2023(10): 1716-1722 .
    7. 刘高源,高欣欣,郭家文. 不同甘蔗品种蔗茎纤维组分差异分析. 中国糖料. 2022(01): 43-47 .
    8. 蒋燚,刘菲,刘雄盛,姜英,黄荣林,王勇,韦铄星,何应会. 珍贵乡土树种江南油杉种质资源保存评价及壮苗繁育体系构建技术. 广西林业科学. 2022(01): 1-9 .
    9. 尹国平,刘雄盛,蒋燚,王勇,杨继生,肖玉菲,黄荣林,姜英. 枫香变红过程中叶片组织结构、光合特性及色素含量变化研究. 广西植物. 2022(07): 1213-1221 .
    10. 罗广令,廖海民,胡国雄. 唇形科苣叶鼠尾草和岩生鼠尾草营养器官的比较解剖结构及其生态适应性. 植物科学学报. 2022(05): 598-609 . 本站查看
    11. 姜英,刘菲,刘雄盛,李娟,何应会,黄荣林,蒋燚. 江南油杉幼苗接种AMF的菌根浸染及依赖性分析. 广西林业科学. 2021(01): 44-48 .

    Other cited types(4)

Catalog

    Article views (666) PDF downloads (596) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return