Advance Search
Cai Yuan-Bao, Yang Xiang-Yan. Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche[J]. Plant Science Journal, 2022, 40(2): 229-239. DOI: 10.11913/PSJ.2095-0837.2022.20229
Citation: Cai Yuan-Bao, Yang Xiang-Yan. Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche[J]. Plant Science Journal, 2022, 40(2): 229-239. DOI: 10.11913/PSJ.2095-0837.2022.20229

Codon usage bias and its influencing factors in the chloroplast genome of Macadamia integrifolia Maiden & Betche

Funds: 

This work was supported by grants from the National Natural Science Foundation of China (31860537), Guangxi Science and Technology Planning Project (GuikeAB19245008), and Basic Research Project of Guangxi Academy of Agricultural Sciences (Guinongke 2021YT154, Guinongke 2020YM56).

More Information
  • Received Date: September 22, 2021
  • Revised Date: November 23, 2021
  • Available Online: October 31, 2022
  • Published Date: April 27, 2022
  • Codon usage bias of 51 genes from the chloroplast genome of Macadamia integrifolia Maiden & Betche was analyzed to determine the main factors affecting the formation of codon bias. The GC content at different codon positions in the chloroplast genes was GC1 > GC2 > GC3, and GC3 was significantly correlated with effective number of codons (ENC) (mean value 48.80 > threshold 45), indicating that the third codon position had direct impact on weak codon bias in the chloroplast genome of M. integrifolia. Neutral-plot analysis showed that there was no significant correlation between GC12 and GC3, with a correlation coefficient and regression slope of 0.186 and 0.265, respectively. ENC-plot analysis showed that most genes were located around the standard curve, and their ENC ratios were distributed between -0.05 and 0.05, suggesting that the differences between actual and expected ENC were small. PR2-plot analysis revealed that the third codon position was biased, where pyrimidine T/C was used more frequently than purine A/G. Relative synonymous codon usage (RSCU) analysis showed that most of the 29 high-frequency codons, 19 high-expression codons, and 16 optimal codons preferentially ended with A or U. Phylogenetic analysis showed that the relationship between M. integrifolia and M. ternifolia was similar. These results suggest that natural selection and base mutation are the main factors influencing weak codon bias in the chloroplast genome of M. integrifolia, and the third codon base, as another influencing factor, prefers to use A or U.
  • [1]
    Xie DF, Yu Y, Deng YQ, Li J, Liu HY, et al. Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution[J]. Int J Mol Sci, 2018, 19(7):1847.
    [2]
    Meucci S, Schulte L, Zimmermann HH, Stoof-Leichsenring KR, Epp L, et al. Holocene chloroplast genetic variation of shrubs (Alnus alnobetula, Betula nana, Salix sp.) at the siberian tundra-taiga ecotone inferred from modern chloroplast genome assembly and sedimentary ancient DNA analyses[J]. Ecology Evol, 2021, 11(5):2173-2193.
    [3]
    Wang K, Cui Y, Wang Y, Gao Z, Liu T, et al. Chloroplast genetic engineering of a unicellular green alga Haematococcus pluvialis with expression of an antimicrobial peptide[J]. Mar Biotechnol, 2020, 22(4):572-580.
    [4]
    Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S. New tools for chloroplast genetic enginee-ring allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii[J]. Appl Microbiol Biotechnol, 2016, 100(12):5467-5477.
    [5]
    Zhang R, Zhang L, Wang W, Zhang Z, Du H, et al. Differences in codon usage bias between photosynthesis-related genes and genetic system-related genes of chloroplast genomes in cultivated and wild Solanum species[J]. Int J Mol Sci, 2018, 19(10):3142.
    [6]
    Wang Z, Xu B, Li B, Zhou Q, Wang G, et al. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species[J]. PeerJ, 2020, 8:e8251.
    [7]
    Bhattacharyya D, Uddin A, Das S, Chakraborty S. Mutation pressure and natural selection on codon usage in chloroplast genes of two species in Pisum L. (Fabaceae:Faboideae)[J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2019, 30(4):664-673.
    [8]
    Chakraborty S, Yengkhom S, Uddin A. Analysis of codon usage bias of chloroplast genes in Oryza species:codon usage of chloroplast genes in Oryza species[J], Planta, 2020, 252(4):67.
    [9]
    Zhao F, Zhou Z, Dang Y, Na H, Adam C, et al. Genome-wide role of codon usage on transcription and identification of potential regulators[J]. Proc Natl Acad Sci USA, 2021, 118(6):e2022590118.
    [10]
    Zhou Z, Dang Y, Zhou M, Li L, Yu CH, et al. Codon usage is an important determinant of gene expression le-vels largely through its effects on transcription[J]. Proc Natl Acad Sci USA, 2016, 113(41):e6117-e6125.
    [11]
    Tian G, Li G, Liu Y, Liu Q, Wang Y, et al. Polyploidization is accompanied by synonymous codon usage bias in the chloroplast genomes of both cotton and wheat[J]. PLoS One, 2020, 15(11):e0242624.
    [12]
    Wu S, Xu L, Huang R, Wang Q. Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii[J]. Bioresour Technol, 2011, 102(3):2610-2616.
    [13]
    Kwon KC, Chan HT, León IR, Williams-Carrier R, Barkan A, et al. Codon optimization to enhance expression yields insights into chloroplast translation[J]. Plant Physiol, 2016, 172(1):62-77.
    [14]
    Liu H, Lu Y, Lan B, Xu JJ. Codon usage by chloroplast gene is bias in Hemiptelea davidii[J]. J Genet, 2020, 99:8.
    [15]
    刘慧, 王梦醒, 岳文杰, 邢光伟, 葛玲巧, 等. 糜子叶绿体基因组密码子使用偏性的分析[J]. 植物科学学报, 2017, 35(3):362-371.

    Liu H, Wang MX, Yue WJ, Xing GW, Ge LQ, et al. Analysis of codon usage in the chloroplast genome of Broomcorn millet (Panicum miliaceum L.)[J]. Plant Science Journal, 2017, 35(3):362-371.
    [16]
    Li G, Zhang L, Xue P. Codon usage pattern and genetic diversity in chloroplast genomes of Panicum species[J]. Gene, 2021, 802:145866.
    [17]
    Nock CJ, Baten A, Barkla BJ, Furtado A, Henry RJ, et al. Genome and transcriptome sequencing characteri-ses the gene space of Macadamia integrifolia (Protea-ceae)[J]. BMC Genomics, 2016, 17(1):937.
    [18]
    Liu J, Niu YF, Ni SB, He XY, Shi C. Complete chloroplast genome of a subtropical fruit tree Macadamia ternifolia (Proteaceae)[J]. Mitochondrial DNA B Resour, 2017, 2(2):738-739.
    [19]
    Liu J, Niu YF, Ni SB, He XY, Zheng C, et al. The whole chloroplast genome sequence of Macadamia tetraphylla (Proteaceae)[J]. Mitochondrial DNA B Resour, 2018, 3(2):1276-1277.
    [20]
    Nock CJ, Baten A, King GJ. Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae[J]. BMC Genomics, 2014, 15(S9):S13.
    [21]
    Nock CJ, Hardner CM, Montenegro JD, Ahmad Termizi AA, Hayashi S, et al. Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing[J]. Front Plant Sci, 2019, 10:334.
    [22]
    Duan H, Zhang Q, Wang C, Li F, Tian F, et al. Analysis of codon usage patterns of the chloroplast genome in Delphinium grandiflorum L. reveals a preference for AT-ending codons as a result of major selection constraints[J]. PeerJ, 2021, 9:e10787.
    [23]
    Li G, Pan Z, Gao S, He Y, Xia Q, et al. Analysis of synonymous codon usage of chloroplast genome in Porphyra umbilicalis[J]. Genes Genomics, 2019, 41(10):1173-1181.
    [24]
    Bulmer M. The selection-mutation-drift theory of synonymous codon usage[J]. Genetics, 1991, 129(3):897-907.
    [25]
    尚明照, 刘方, 华金平, 王坤波. 陆地棉叶绿体基因组密码子使用偏性的分析[J]. 中国农业科学, 2011, 44(2):245-253.

    Shang MZ, Liu F, Hua JP, Wang KB. Analysis on codon usage of chloroplast genome of Gossypium hirsutum[J]. Scientia Agricultura Sinica, 2011, 44(2):245-253.
    [26]
    Tang D, Wei F, Cai Z, Wei Y, Khan A, et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth[J]. Dev Genes Evol, 2021, 231(1-2):1-9.
    [27]
    Nair RR, Nandhini MB, Monalisha E, Murugan K, Sethuraman T, et al. Synonymous codon usage in chloroplast genome of Coffea arabica[J]. Bioinformation, 2012, 8(22):1096-1104.
    [28]
    杨祥燕, 蔡元保, 谭秦亮, 覃旭, 黄显雅, 等. 菠萝叶绿体基因组密码子偏好性分析[J]. 热带作物学报, 2022, 43(3):439-446.

    Yang XY, Cai YB, Tan QL, Qin Xu, Huang XY, et al. Analysis of codon usage bias in the chloroplast genome of Ananas comosus[J]. Chinese Journal of Tropical Crops, 2022, 43(3):439-446.
    [29]
    Wang L, Roossinck MJ. Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants[J]. Plant Mol Biol, 2006, 61(4-5):699-710.
    [30]
    Quax TE, Claassens NJ, Söll D, Oost J. Codon bias as a means to fine-tune gene expression[J]. Mol Cell, 2015, 59(2):149-161.
    [31]
    Qi YY, Xu WJ, Xing T, Zhao MM, Li NN, et al. Synonymous codon usage bias in the plastid genome is unrelated to gene structure and shows evolutionary heterogeneity[J]. Evol Bioinform Online, 2015, 11(1):65-77.
    [32]
    Paul P, Malakar AK, Chakraborty S. Codon usage and amino acid usage influence genes expression level[J]. Genetica, 2018, 146(1):53-63.
  • Related Articles

    [1]Tang Meng, Huang Ting, Chen Xiao-Li, Li Bu-Yu, Luo Feng, Zhang Xue-Mei. Chloroplast genome characteristics and codon usage bias analysis of Quercus austroglauca Y. T. Chang[J]. Plant Science Journal, 2023, 41(3): 322-332. DOI: 10.11913/PSJ.2095-0837.22201
    [2]Ouyang Lu, Ba Sang, Lha Duo, Liu Xiao-Yan, Liu Gui-Hua, Liu Wen-Zhi, Ding Bang-Jing. Analysis of plant and soil bacterial diversity and their influencing factors in Tibetan Plateau wetlands[J]. Plant Science Journal, 2023, 41(1): 44-52. DOI: 10.11913/PSJ.2095-0837.22112
    [3]Wang Yu-Chen, Wang Wen-Juan, Zhong Yue-Ming, Lei Shan-Qing, Li Jing-Wen. Study on the foraging behavior of clonal roots and its influencing factors in Populus euphratica Oliv.[J]. Plant Science Journal, 2020, 38(3): 410-417. DOI: 10.11913/PSJ.2095-0837.2020.30410
    [4]Jin Gang, Wang Li-Ping, Long Ling-Yun, Wu Feng, Tang Yu-Juan, Qin Jian-Feng, Wei Dan-Ni, Huang Qiu-Wei, Su Wen-Pan. Analysis of codon usage bias in the mitochondrial protein-coding genes of Oryza rufipogon[J]. Plant Science Journal, 2019, 37(2): 188-197. DOI: 10.11913/PSJ.2095-0837.2019.20188
    [5]Liu Hui, Wang Meng-Xing, Yue Wen-Jie, Xing Guang-Wei, Ge Ling-Qiao, Nie Xiao-Jun, Song Wei-Ning. Analysis of codon usage in the chloroplast genome of Broomcorn millet (Panicum miliaceum L.)[J]. Plant Science Journal, 2017, 35(3): 362-371. DOI: 10.11913/PSJ.2095-0837.2017.30362
    [6]Miao Ling-Feng, Zhang Li-Jia, Pu Yu-Jin, Yang Fan. Factors that affect measurement using the WP4C dewpoint potential meter to determine water potential——Illustrated by the case of Dalbergia odorifera[J]. Plant Science Journal, 2017, 35(1): 93-98. DOI: 10.11913/PSJ.2095-0837.2017.10093
    [7]ZHU Xia-Xia, ZHANG Hua, ZHU Yan, LIU Jian-Gang, ZHU Ye-Ping, LÜ Rui, WANG Ying, MA Ming-Jun. Forest Community Species Diversity and the Influencing Factors in the Rock Stream Periglacial Landforms of Mt. Laotudingzi[J]. Plant Science Journal, 2016, 34(1): 67-77. DOI: 10.11913/PSJ.2095-0837.2016.10067
    [8]DING Li-Ping, GAO Ying, LI Sheng-Chun, WANG Cheng, WANG Yue-Sheng, HE Guang-Yuan. Study on Influencing Factors of Mature Embryos of Wheat by Particle Bombardment[J]. Plant Science Journal, 2007, 25(3): 217-221.
    [9]HUANG Xuan, XU Zi-Qin, HAO Jian-Guo, LI Jing. Factors Affecting Wheat(Triticum aestivum L.)Transformation Mediated by Biolistic Bombardment[J]. Plant Science Journal, 2004, 22(2): 111-115.
    [10]Zhang Youde, Zhang Junzhi, Mei Fangzhu, Zhou Daming, Hu Delin, Wang Yuanfu. THE TILLERING RULE ON EULALIOPSlS BINATA AND ITS CONTROLLING FACTORS[J]. Plant Science Journal, 1993, 11(2): 185-192.
  • Cited by

    Periodical cited type(8)

    1. 郭昱昊,李苑虹,曹燕,王飞飞,祝振洲. 促进黄丝藻储能物质高效富集的氮调控策略. 中国油脂. 2023(12): 121-127 .
    2. 王飞飞,李苑虹,郭昱昊,祝振洲,张成武. 黄丝藻处理废水与生物质高值化利用研究进展. 现代化工. 2022(12): 54-59 .
    3. WANG Feifei,GUO Yuhao,CAO Yan,ZHANG Chengwu. In vitro Antibacterial Activity of Palmitoleic Acid Isolated from Filamentous Microalga Tribonema minus Against Fish Pathogen Streptococcus agalactiae. Journal of Ocean University of China. 2022(06): 1615-1621 .
    4. 戴晨明,高保燕,苏敏,黄罗冬,王飞飞,赵伟,张成武. 光强及氮浓度对丝状绿藻双星藻生长及生化组成的影响. 微生物学通报. 2020(01): 172-181 .
    5. 韦芊含,雷伟伟,陈昕,赵伟亚,张蒙,肖金吒,张雨梅. 饲用黄丝藻粉的急性毒性和亚慢性毒性试验. 中国畜牧兽医. 2020(05): 1602-1610 .
    6. 张婷,何青,徐梓钧,索菲娅,张成武,胡强. 不同营养盐及浓度对黄丝藻Tribonema sp.FACHB-1786生长及脂质积累的影响. 生物工程学报. 2020(11): 2478-2493 .
    7. 冯倩,王琳,蔡忠贞,陈昱,李青,白雪梅. 碳氮源和盐度对异养黄丝藻脂肪酸产量的影响. 安徽农业科学. 2019(12): 98-103 .
    8. 刘敏胜,耿金峰,王慧岭,马欣欣,白秀君. 微藻产油技术进展. 生物产业技术. 2019(05): 22-31 .

    Other cited types(3)

Catalog

    Article views (482) PDF downloads (192) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return