Citation: | Ma Rui, Liu Chen-Yu, Han Lu, Wang Hai-Zhen. Trade-off relationship between leaf number and leaf size on current-year twigs of Populus euphratica Oliv. in response to groundwater gradients in extreme arid area of northwestern China[J]. Plant Science Journal, 2022, 40(2): 240-249. DOI: 10.11913/PSJ.2095-0837.2022.20240 |
[1] |
Blonder B, Kapas RE, Dalton RM, Graae BJ, Heiling JM, et al. Microenvironment and functional-trait context dependence predict alpine plant community dynamics[J]. J Ecol,2018,106(4):1323-1337.
|
[2] |
Niinemets V,Portsmuth A,Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species:a neglected source of leaf physiological differentiation?[J].Funct Ecol,2007,21(1):28-40.
|
[3] |
杨冬梅,占峰,张宏伟.清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J].植物生态学报,2012,36(4):281-291.
Yang DM,Zhan F,Zhang HW. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China[J]. Chinese Journal of Plant Ecology,2012,36(4):281-291.
|
[4] |
李曼,郑媛,郭英荣,程林,卢宏典,等.武夷山不同海拔黄山松枝叶大小关系[J].应用生态学报,2017,28(2):537-547.
Li M,Zheng Y,Guo YR,Cheng L,Lu HD,et al. Sca-ling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains,China[J].Chinese Journal of Applied Ecology,2017,28(2):537-547.
|
[5] |
曾郅玮,赵世杰,鲜骏仁,陈国鹏,王玉荧,等.长期增温对树线交错带岷江冷杉幼苗异龄叶大小与出叶强度关系的影响[J].生态学报,2021,41(14):5782-5791.
Zeng ZW,Zhao SJ,Xian JR,Chen GP,Wang YY,et al. Long-term warming effects on relationship between leaf size and leafing intensity of Abies faxoniana seedlings in the treeline ecotone[J]. Acta Ecologica Sinica,2021,41(14):5782-5791.
|
[6] |
Kleiman D,Aarssen LW. The leaf size/number trade-off in trees[J]. J Ecol,2007,95(2):376-382.
|
[7] |
李锦隆,王满堂,李涵诗,陈晓萍,孙俊,等.冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J].林业科学,2021,57(2):62-71.
Li JL,Wang MT,Li HS,Cheng XP,Sun J,et al. Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi Province[J]. Scientia Silvae Sinicae,2021,57(2):62-71.
|
[8] |
Xiang S,Wu N,Sun S. Testing the generality of the ‘leafing intensity premium’ hypothesis in temperate broad-leaved forests:a survey of variation in leaf size within and between habitats[J]. Evol Ecol,2010, 24(4):685-701.
|
[9] |
Niklas KJ,Cobb ED,Niinemets V,Reich PB,Sellin A,et al. "Diminmishing returns" in the scaling of functional leaf traits across and within species groups[J]. Proc Natl Acad Sci USA,2007,104(21):8891-8896.
|
[10] |
Li T,Deng JM,Wang GX,Cheng DL,Yu ZL. Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats[J]. Pol J Ecol,2009,57(4):659-667.
|
[11] |
Huang YX,Lechowicz MJ,Price CA,Li L,Wang Y,et al. The underlying basis for the trade-off between leaf size and leafing intensity[J]. Funct Ecol,2016, 30(2):199-205.
|
[12] |
Craine JM,Lee WG,Bond WJ,Williams RJ,Johnson LC. Environmental constraints on a global relationship among leaf and root traits of grasses[J]. Ecology,2005,86(1):12-19.
|
[13] |
Xiang S,Liu YL,Fang F,Sun SC. Stem architectural effect on leaf size, leaf number and leaf mass fraction in plant twigs of woody species[J]. Int J Plant Sci,2009,170(8):999-1008.
|
[14] |
Li J,Yu B,Zhao C,Nowak RS,Zhao Z,et al. Physiological and morphological responsesof Tamarix ramosissima and Populus euphratica to altered groundwater availa-bility[J].Tree Physiol,2013,33(1):57-68.
|
[15] |
魏圆慧,梁文召,韩路,王海珍.胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报,2021,41(13):5368-5376.
Wei YH,Liang WZ,Han L,Wang HZ. Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area[J].Acta Ecologica Sinica,2021,41(13):5368-5376.
|
[16] |
Sun SC,Jin DM,Shi PL.The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient:an invariant allometric scaling relationship[J]. Ann Bot,2006,97(1):97-107.
|
[17] |
李金明,叶玉媛,刘锦春.重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J].植物科学学报,2021,39(1):76-84.
Li JM,Ye YY,Liu JC. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal,2021,39(1):76-84.
|
[18] |
Niinemets V,Portsmuth A,Tobias M. Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants[J]. New Phytol,2006,171(1):91-104.
|
[19] |
Fan ZX,Sterck F,Zhang SB,Fu PL,Hao GY. Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species[J]. Front Plant Sci,2017(8):1619.
|
[20] |
Wright IJ,Westoby M,Reich PB. Convergence towards-higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. J Ecol,2002, 90(3):534-543.
|
[21] |
Ackerly DD,Cornwell WK. A trait-based approach to community assembly:partitioning of species trait values into within-and among-community components[J]. Ecol Lett,2007, 10(2):135-145.
|
[22] |
Poorter H,Pepin S,Rijkers T,de Jong Y,Evans JR,et al. Construction costs, chemical composition and payback time of high-and low-irradiance leaves[J]. J Exp Bot,2006,57(2):355-371.
|
[23] |
Pan YP,Chen YP,Chen YN,Wang RZ,Ren ZG. Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the northwest of China[J]. Trees,2016,30(6):2029-2039.
|
[24] |
Zhu SD,Chen YJ,Fu PL,Cao KF. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability[J]. Tree Physiol,2017,37(11):1469-1477.
|
[25] |
McCulloh KA,Sperry JS. Patterns in hydraulic architecture and their implications for transport efficiency[J].Tree Physiol,2005,25(3):257-267.
|
[26] |
Yagi T. Within-tree variations in shoot differentiation patterns of 10 tall tree species in a Japanese cool-temperate forest[J].Can J Bot,2004,82(2):228-243.
|
[27] |
Givnish TJ,Vermeij GJ. Sizes and shapes of liane leaves[J]. Am Nat,1976,110(975):743-778.
|
[28] |
Mencuccini M. The ecological significance of long-distance water transport:short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms[J]. Plant Cell Environ,2003,26(1):163-182.
|
[29] |
马建新,陈亚宁,李卫红,黄湘,朱成刚,等.胡杨液流对地下水埋深变化的响应[J]. 植物生态学报,2010,34(8):915-923.
Ma JX,Chen YN,Li WH,Huang X,Zhu CG,et al. Response of sap flow in Populus euphratica to changes in groundwater depth in the middle and lower reaches of the Tarim River of northwestern China[J].Chinese Journal of Plant Ecology,2010,34(8):915-923.
|
[30] |
Ryan MG,Phillips N,Bond BJ. The hydraulic limitation hypothesis revisited[J]. Plant Cell Environ,2006,29(3):367-381.
|
[31] |
Coble AP,Cavaleri MA. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment[J]. Oecologia,2015,177(4):1131-1143.
|