Advance Search
Mu Yan-Yan, Wu Qi-Mei, Zhang Zhao-Hui, Ding Hai-Feng. Effects of morphological and structural characteristics of six species of Sphagnum on their water-holding capacity[J]. Plant Science Journal, 2022, 40(2): 250-258. DOI: 10.11913/PSJ.2095-0837.2022.20250
Citation: Mu Yan-Yan, Wu Qi-Mei, Zhang Zhao-Hui, Ding Hai-Feng. Effects of morphological and structural characteristics of six species of Sphagnum on their water-holding capacity[J]. Plant Science Journal, 2022, 40(2): 250-258. DOI: 10.11913/PSJ.2095-0837.2022.20250

Effects of morphological and structural characteristics of six species of Sphagnum on their water-holding capacity

Funds: 

This work was supported by grants from the Department of Science and Technology Foundation of Guizhou Province, China and Science and Technology Foundation of Guizhou Province (Qiankehe Jichu[2017]1127).

More Information
  • Received Date: September 17, 2021
  • Revised Date: October 14, 2021
  • Available Online: October 31, 2022
  • Published Date: April 27, 2022
  • In this study, six Sphagnum species were collected from the wetlands of the Screw Shell Mountain Scenic Spot in Maojian Town, Duyun City, Guizhou, China to measure stem diameter, plant height, number of lateral branches and branches, saturated water absorption rate, external water absorption rate, internal water absorption rate, leaf hyaline cell area, and lateral branch density. Results showed that:(1) Saturated water absorption rates of the six species were:S.cuspidatum Ehrh (2518.99%) > S.palustre L. ssp. pseudocymbifolium (C.Müll.) A.Eddy (2351.87%) > S.palustre L.ssp. Palustre (2122.88%)> S.microporum Warnst. ex Card (1936.79%) > S.platyphylloides Warnst (1684.88%) > S. ovatum Hampe (1660.64%). (2) Internal water absorption was higher than external water absorption in all species. (3) Leaf hyaline cell area percentage was positively correlated with water absorption (saturated, external, and internal) (P < 0.01). Lateral branch density was positively correlated with internal water absorption (P < 0.01) and saturated water absorption (P < 0.05). Among the indicators measured, leaf hyaline cell area percentage and lateral branch density had the greatest influence on the water-holding capacity of Sphagnum.
  • [1]
    Lindo Z, Gonzalez A. The bryosphere:an integral and influential component of the earth's biosphere[J]. Ecosystems, 2010, 13(4):612-627.
    [2]
    Shaw AJ, Schmutzx J, Devos N, Shu S, Carrell AA, Westony DJ. The Sphagnum genome project:a new model for ecological and evolutionary genomics[J]. Adv Bot Res, 2016, 78:167-187.
    [3]
    麻俊虎, 彭涛, 李大华. 中国泥炭藓属植物研究进展[J]. 贵州师范大学学报(自然科学版), 2017, 35(1):114-120.

    Ma JH, Peng T, Li DH. Recent advances of Sphagnum plant research in China[J]. Journal of Guizhou Normal University (Natural Sciences), 2017, 35(1):114-120.
    [4]
    Clymo RS, Hayward PM. The ecology of Sphagnum[M]//Smith AJE, ed. Bryophyte Ecology. London:Chapman and Hall, 1982:229-289.
    [5]
    Wu QM, Wang X, Zhou QX. Biomonitoring persistent organic pollutants in the atmosphere with mosses:perfor-mance and application[J]. Environ Int, 2014, 66:28-37.
    [6]
    Onianwa PC. Monitoring atmospheric metal pollution:a review of the use of mosses as indicators[J]. Environ Monit Assess, 2001, 71(1):13-50.
    [7]
    Mckeon-Bennett MMP, Hodkinson TR. Sphagnum moss as a novel growth medium in sustainable indoor agriculture systems[J]. Curr Opin Environ Sci Health, 2021, 22:100269.
    [8]
    何春梅, 张朝晖, 王智慧, 石匡正. 贵州麻若平台泥炭藓沼泽中泥炭藓持水特性及其与土壤营养元素关系研究[J]. 植物科学学报, 2020, 38(5):618-626.

    He CM, Zhang ZH, Wang ZH, Shi KZ. Water retention characteristics of Sphagnum and their relationship with soil nutrient content in the peatland of Maruo, upland Guizhou[J]. Plant Science Journal, 2020, 38(5):618-626.
    [9]
    吴玉环, 程国栋, 高谦. 苔藓植物的生态功能及在植被恢复与重建中的作用[J]. 中国沙漠, 2003, 23(3):215-220.

    Wu YH, Cheng GD, Gao Q. Bryophyte's ecology functions and its significances in revegetation[J]. Journal of Desert Research, 2003, 23(3):215-220.
    [10]
    麻俊虎, 李大华, 彭涛, 李飞, 文浩斌, 等. 独山泥炭藓沼泽湿地五种泥炭藓植物持水特性研究[J]. 分子植物育种, 2017, 15(3):1170-1176.

    Ma JH, Li DH, Peng T, Li F, Wen HB, et al. Study on water-holding characteristics of five Sphagnum species in Dushan Sphagnum wetland[J]. Molecular Plant Bree-ding, 2017, 15(3):1170-1176.
    [11]
    Schipperges B, Rydin H. Response of photosynthesis of Sphagnum species from contrasting microhabitants to tissue water content and repeated desiccation[J]. New Phytol, 1998, 140(4):677-684.
    [12]
    Andrus RE. Some aspects of Sphagnum ecology[J]. Can J Bot, 1986, 64(2):416-426.
    [13]
    Waddington JM, Lucchese MC, Duval TP. Sphagnum moss moisture retention following the re-vegetation of degraded peatlands[J]. Ecohydrology, 2011, 4(3):359-366.
    [14]
    石匡正, 张朝晖, 何春梅, 王智慧. 毕节吞天井边缘地带不同郁闭度环境对泥炭藓叶绿素荧光特性及蓄水量的影响[J]. 植物研究, 2021, 41(2):262-269.

    Shi KZ, Zhang ZH, He CM, Wang ZH. Effects of different canopy density on the chlorophyll fluorescence and water storage capacity of Sphagnum palustre in the edge of the Tuntianjing sinkhole in Bijie city[J]. Bulletin of Botanical Research, 2021, 41(2):262-269.
    [15]
    Mccarter C, Price JS. Ecohydrology of Sphagnum moss hummocks:mechanisms of capitula water supply and simulated effects of evaporation[J]. Ecohydrology, 2014, 7(1):33-44.
    [16]
    Hayward PM, Clymo RS. Profiles of water content and pore size in Sphagnum and peat, and their relation to peat bog ecology[J]. Proc R Soc London B:Biological Sciences (1934-1990), 1982, 215(1200):299-325.
    [17]
    Kremer CL, Drinnan AN. Secondary walls in hyaline cells of Sphagnum[J]. Aust J Bot, 2004, 52(2):243-256.
    [18]
    Hájek T, Beckett RP. Effect of water content components on desiccation and recovery in Sphagnum mosses[J]. Ann Bot-London, 2008, 101(1):165-173.
    [19]
    Hájek T. Physiological ecology of peatland bryophytes[M]. Heidelberg:Springer Netherlands, 2014:233-252.
    [20]
    陈天驰. 泥炭藓的超亲水机理研究[D]. 徐州:中国矿业大学, 2018:19-36.
    [21]
    Price JS, Whittington PN. Water flow in Sphagnum hummocks:Mesocosm measurements and modelling[J]. J Hydrol, 2010, 381(3):333-340.
    [22]
    蒙文萍, 冉景丞, 文洁斌, 白万堂, 莫秀模. 泥炭藓人工种植实验初探[J]. 贵州林业科技, 2018, 46(2):33-39.

    Meng WP, Ran JC, Wen JB, Bai WT, Mo XM. A preliminary study on artificial planting experiment of Sphagnum[J]. Guizhou Forestry Science and Technology, 2018, 46(2):33-39.
    [23]
    王晓宇, 熊源新. 贵州泥炭藓属植物物种多样性研究[J]. 广西植物, 2009, 29(2):208-211.

    Wang XY, Xiong YX. A study on the species diversity of Sphagnum from Guizhou Province, China[J]. Guihaia, 2009, 29(2):208-211.
    [24]
    朱宽香,王智慧. 贵州莱氏藓属(中文,新拟名) Lewinskya分布新纪录及附生特征[J]. 贵州师范大学学报(自然科学版), 2021, 39(3):23-30.

    Zhu KX, Wang ZH. New records and epiphytic features of the genus Lewinskya (Chinese, new name) from Guizhou[J]. Journal of Guizhou Normal University (Natural Scien-ces), 2021, 39(3):23-30.
    [25]
    钱莉莉, 贺中华, 梁虹, 杨朝晖, 曾信波. 基于降水Z指数的贵州省农业干旱时空演化特征[J]. 贵州师范大学学报(自然科学版),2019, 37(1):10-14.

    Qian LL, He ZH, Liang H, Yang CH, Zeng XB. Spatial-temporal evolution characteristics of agricultural drought based on precipitation Z index in Guizhou[J]. Journal of Guizhou Normal University (Natural Sciences), 2019, 37(1):10-14.
    [26]
    高谦. 中国苔藓志:第1卷[M]. 北京:科学出版社, 1994:2-54.
    [27]
    Michaelis D. The Sphagnum Species of the World[M]. Stuttgart:Schweizerbart Science Publishers, 2019:7-397.
    [28]
    Gerdol R, Bonora A, Gualandri R, Pancaldi S. CO2 exchange, photosynthetic pigment composition, and cell ultrastructure of Sphagnum mosses during dehydration and subsequent rehydration[J]. Can J Bot, 1996, 74(5):726-734.
    [29]
    Rydin H, Mcdonald AJS. Photosynthesis in Sphagnum at different water contents[J]. J Bryol, 1985, 13(4):579-584.
    [30]
    Titus JE, Wagner DJ. Carbon balance for two Sphagnum mosses:water balance resolves a physiological paradox[J]. Ecology, 1984, 65(6):1765-1774.
    [31]
    张显强, 曾建军, 谌金吾, 罗正伟, 孙敏. 石漠化干旱环境中石生藓类水分吸收特征及其结构适应性[J]. 生态学报, 2012, 32(12):3902-3911.

    Zhang XQ, Zeng JJ, Shen JW, Luo ZW, Sun M. The saxicolous moss's features of absorbing water and its structural adaptability in the heterogeneous environment with rock desertification[J]. Acta Ecologica Sinica, 2012, 32(12):3902-3911.
    [32]
    刘章文, 陈仁升, 宋耀选, 韩春坛. 祁连山高寒灌丛苔藓持水性能[J]. 干旱区地理, 2014, 37(4):696-703.

    Liu ZW, Chen RS, Song YX, Han CT. Water holding capacity of mosses under alpine shrubs in Qilian Mountains[J]. Arid Land Geography, 2014, 37(4):696-703.
    [33]
    Rice SK, Aclander L, Hanson DT. Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Spha-gnaceae)[J]. Am J Bot, 2008, 95(11):1366-1374.
    [34]
    葛佳丽, 卜兆君, 郑星星, 马进泽, 崔伟琳, 谷晓楠. 三种泥炭藓对干旱及植物相互作用的形态响应[J]. 生态学杂志, 2014, 33(9):2363-2368.

    Ge JL, Bu ZJ, Zheng XX, Ma JZ, Cui WL, Gu XN. Morphological responses of three Sphagnum species to drought and interspecific interaction[J]. Chinese Journal of Ecology, 2014, 33(9):2363-2368.
    [35]
    Bu ZJ, Zheng XX, Rydin H, Moore T, Ma J. Facilitation vs. competition:Does interspecific interaction affect drought responses in Sphagnum?[J]. Basic Appl Ecol, 2013, 14(7):574-584.
    [36]
    Glime JM. Michigan Technological University and the International Association of Bryologists. Bryophyte Ecology.[DB/OL][2021-07-31].http://www.bryoecol.mtu.edu/.
    [37]
    Luken JO. Zonation of Sphagnum mosses:interactions among shoot growth, growth form, and water balance[J]. The Bryologist, 1985, 88(4):374-379.
    [38]
    张克新, 王娟娟, 彭娇婷, 苏志华. 贵州省降水集散程度时空变化及其影响因素分析[J]. 贵州师范大学学报(自然科学版), 2020, 38(2):10-18.

    Zhang KX, Wang JJ, Peng JT, Su ZH. Spatial temporal variation characteristics and influence factors of precipita-tion concentration index in Guizhou[J]. Journal of Guizhou Normal University (Natural Sciences), 2020, 38(2):10-18.
    [39]
    Song L, Zhang YJ, Chen X, Li S, Lu HZ, et al. Water relations and gas exchange of fan bryophytes and their ada-ptations to microhabitats in an Asian subtropical montane cloud forest[J]. J Plant Res, 2015, 128(4):573-584.
    [40]
    申家琛, 张朝晖, 王慧慧, 黄欢, 王智慧. 贵阳喀斯特公园南石林秋季藓类植物的持水特性[J]. 生态与农村环境学报, 2017, 33(10):907-912.

    Shen JC, Zhang ZH, Wang HH, Huang H, Wang ZH. Water retention capacity of autumn mosses in south stone forest of Guiyang karst park[J]. Journal of Ecology and Rural Environment, 2017, 33(10):907-912.
    [41]
    叶吉, 郝占庆, 于德永, 闫海冰, 封德全. 苔藓植物生态功能的研究进展[J]. 应用生态学报, 2004, 15(10):1939-1942.

    Ye J, Hao ZQ, Yu DY, Yan HB, Feng DQ. Research advances in bryophyte ecological function[J]. Chinese Journal of Applied Ecology, 2004, 15(10):1939-1942.
    [42]
    熊康宁, 李晋, 龙明忠. 典型喀斯特石漠化治理区水土流失特征与关键问题[J]. 地理学报, 2012, 67(7):878-888.

    Xiong KN,Li J, Long MZ. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification[J]. Acta Geographica Sinica, 2012, 67(7):878-888.
  • Related Articles

    [1]Zhu Kai, Fan Yingxuan, Zuo Qihui, Tan Siyu, Liu Fenwu, Zhang Jian, Qin Junmei, Gao Lina. Photosynthetic limitation in soybean in response to soil water-nitrogen interactions and its relationship with leaf water use efficiency[J]. Plant Science Journal, 2024, 42(5): 634-643. DOI: 10.11913/PSJ.2095-0837.24036
    [2]Quan Xue, Zhang Shi-Bao. Influence of water availability on the physiology and leaf anatomical structure of a medicinal orchid, Bletilla striata[J]. Plant Science Journal, 2018, 36(3): 370-380. DOI: 10.11913/PSJ.2095-0837.2018.30370
    [3]ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320
    [4]JIN Jiang-Qun, GUO Quan-Shui, ZHU Li, XU Ge-Xi, LIU Jian-Feng, PEI Shun-Xiang. Photosynthetic Characteristics and Water Use Efficiency of Thuja sutchuenensis Franch. During Water Stress and Recovery[J]. Plant Science Journal, 2012, 30(6): 599-610. DOI: 10.3724/SP.J.1142.2012.60599
    [5]HU Ying, CHU Hai-Jia, LI Jian-Qiang. Response of Leaf Anatomy Characteristics and Its Plasticity to Different Soil-water Conditions of Medicago ruthenica in Four Populations[J]. Plant Science Journal, 2011, 29(2): 218-225.
    [6]ZHU Wan-Ze, WANG Jin-Xi, XUE Jian-Hui. Water Physiological Characteristics of Introduced Alnus formosana[J]. Plant Science Journal, 2004, 22(6): 539-545.
    [7]BI Yong-Hong, HU Zheng-Yu. Effect of Water on Physiological Activity of Nostoc flagelliforme[J]. Plant Science Journal, 2003, 21(6): 503-507.
    [8]XIAO Yi-An. The Physiological Responses and Adjective Adaptability of Water Stress on Cleome spinosa L. Seedlings[J]. Plant Science Journal, 2001, 19(6): 524-528.
    [9]LIU Ying-Di, ZHU Jie-Ying, CHEN Jun, CAO Tong. Relationships of Water Content to Photosynthesis, Respiration and Water Potential in Three Species of Mosses[J]. Plant Science Journal, 2001, 19(2): 135-142.
    [10]Cheng Jimin, Li Xianglan. THE VEGETATIONAL FEATURES AND WATER-HOLDING EFFECTS OF THE LITTER IN THE ZIWU RIDGE[J]. Plant Science Journal, 1992, 10(1): 54-64.
  • Cited by

    Periodical cited type(3)

    1. 莫秀模. 泥炭藓生物学特性及人工栽培关键技术. 种子科技. 2025(02): 69-71 .
    2. 王瑶欣,薛永军,袁莹,陈玲玲,杨艳平,孙越. 泥炭藓形态特征与栽培对其吸水功能的影响. 贵州农业科学. 2023(07): 79-86 .
    3. 杨林,何小燕,王莲辉,杨冰. 贵州省泥炭藓科种类资源及分布特征. 西部林业科学. 2023(04): 83-89+107 .

    Other cited types(3)

Catalog

    Article views (477) PDF downloads (237) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return