Citation: | Liu YL,Ou CQ,Zhang YJ,Li SR,Ye Y,Jiang SL,Wang F. Research progress on the mechanism of fruit abscission regulation in fruit trees[J]. Plant Science Journal,2024,42(1):125−133. DOI: 10.11913/PSJ.2095-0837.23054 |
The abscission of fruit is a crucial stage in the ontogeny of fruit trees, signifying the detachment of fruit from the tree body. This process is integral to the survival, growth, reproduction, and economic value of fruit trees. As such, analyzing the molecular mechanisms that regulate fruit abscission is important for improving fruit tree varieties and fruit quality. Fruit abscission predominantly occurs in the abscission zone, a region in which the generation and reception of abscission-stimulating signals are regulated by multiple genes. This regulatory process is the outcome of the joint action of various factors, including cellular structure, carbohydrates, cell wall metabolic enzymes, ethylene synthesis, and signal transduction pathways. The functional dynamics and interrelationships of these factors warrant further exploration. In light of this, the present paper provides a comprehensive review of the formation and structural changes of the abscission zone, concentrations of carbohydrates, ethylene, and other substances, and expression of related genes during the fruit abscission process in fruit trees. This review aims to provide novel insights into the study of the fruit abscission mechanism and to lay a theoretical foundation for the scientific regulation of fruit abscission, improvement of fruit quality, and reduction of losses in fruit tree production.
[1] |
Finazzo SF,Davenport TL,Schaffer B. Partitioning of photoassimilates in avocado (Persea americana Mill. ) during flowering and fruit set[J]. Tree Physiol,1994,14(2):153−164. doi: 10.1093/treephys/14.2.153
|
[2] |
Li CQ,Zhao ML,Ma XS,Wen ZX,Ying PY,et al. The HD-Zip transcription factor LcHB2 regulates litchi fruit abscission through the activation of two cellulase genes[J]. J Exp Bot,2019,70(19):5189−5203. doi: 10.1093/jxb/erz276
|
[3] |
Hu X,Yang M,Gong SF,Li HB,Zhang J,et al. Ethylene-regulated immature fruit abscission is associated with higher expression of CoACO genes in Camellia oleifera[J]. Roy Soc Open Sci,2021,8(6):202340. doi: 10.1098/rsos.202340
|
[4] |
Ma XS,Li CQ,Huang XM,Wang HC,Wu H,et al. Involvement of HD-ZIP Ⅰ transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and ABA in litchi[J]. Tree Physiol,2019,39(9):1600−1613. doi: 10.1093/treephys/tpz071
|
[5] |
王新力,彭学贤. 香蕉果实成熟相关基因ACO1启动子区的克隆及其功能初探[J]. 生物工程学报,2001,17(4):428−431.
Wang XL,Peng XX. Cloning of promoter of banana fruit ripening-related ACO1 and primary study on its function[J]. Chinese Journal of Biotechnology,2001,17(4):428−431.
|
[6] |
Kućko A,Wilmowicz E,Pokora W,de Dios Alché J. Disruption of the auxin gradient in the abscission zone area evokes asymmetrical changes leading to flower separation in yellow lupine[J]. Int J Mol Sci,2020,21(11):3815. doi: 10.3390/ijms21113815
|
[7] |
Patterson SE. Cutting Loose. Abscission and dehiscence in Arabidopsis[J]. Plant Physiol,2001,126(2):494−500. doi: 10.1104/pp.126.2.494
|
[8] |
Estornell LH,Agustí J,Merelo P,Talón M,Tadeo FR. Elucidating mechanisms underlying organ abscission[J]. Plant Sci,2013,199-200:48−60. doi: 10.1016/j.plantsci.2012.10.008
|
[9] |
Rascio N,Casadoro G,Ramina A,Masia A. Structural and biochemical aspects of peach fruit abscission (Prunus persica L. Batsch)[J]. Planta,1985,164(1):1−11. doi: 10.1007/BF00391019
|
[10] |
Wilmowicz E,Kućko A,Ostrowski M,Panek K. Inflorescence deficient in abscission-like is an abscission-associated and phytohormone-regulated gene in flower separation of Lupinus luteus[J]. Plant Growth Regul,2018,85(1):91−100. doi: 10.1007/s10725-018-0375-7
|
[11] |
Dunlap JR,Wang YT,Skaria A. Abscisic acid- and ethylene-induced defoliation of Radermachera sinica L.[J]. Plant Growth Regul,1994,14(3):243−248. doi: 10.1007/BF00024799
|
[12] |
Zhu H,Dardick CD,Beers EP,Callanhan AM,Xia R,Yuan RC. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis,alterations in carbohydrate transport and signaling and hormone crosstalk[J]. BMC Plant Biol,2011,11(1):138. doi: 10.1186/1471-2229-11-138
|
[13] |
Li CQ,Wang Y,Huang XM,Li J,Wang HC,Li JG. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi[J]. Front Plant Sci,2015,6:439.
|
[14] |
Yang ZQ,Zhong XM,Fan Y,Wang HC,Li JG,Huang XM. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in Longan (Dimocarpus longan)[J]. Front Plant Sci,2015,6:360.
|
[15] |
Lakso AN,Robinson TL,Greene DW. Integration of environment,physiology and fruit abscission via carbon balance modeling-implications for understanding growth regulator responses[J]. Acta Hortic,2006,727:321−326.
|
[16] |
郭春苗,朱正阳,木巴热克·阿尤普,许娟,肖丽,等. 扁桃蔗糖合成酶对幼果生理脱落的响应研究[J]. 新疆农业科学,2018,55(11):2012−2020.
Guo CM,Zhu ZY,Mubareke · Ayoupu,Xu J,Xiao L,et al. Response of the sucrose synthase (SuSy) to physiological fruit shedding of almond young fruit[J]. Xinjiang Agricultural Sciences,2018,55(11):2012−2020.
|
[17] |
郭春苗,杨波,木巴热克·阿尤普,车玉红,肖丽,等. 扁桃酸性转化酶在生理落果期的特征分析及与落果的关系[J]. 分子植物育种,2019,17(14):4785−4790.
Guo CM,Yang B,Mubareke · Ayoupu,Che YH,Xiao L,et al. Characteristics of acid invertase (AcAI) and its relationship with fruit drop during the physiological fruit drop of almond[J]. Molecular Plant Breeding,2019,17(14):4785−4790.
|
[18] |
黄永敬,吴文,曾继吾,陈杰忠,张瑞敏,朱从一. 夏梢生长条件下树干供糖对‘砂糖橘’幼果糖代谢及脱落的影响[J]. 热带作物学报,2019,40(8):1522−1528.
Huang YJ,Wu W,Zeng JW,Chen JZ,Zhang RM,Zhu CY. Effects of trunk injection sucrose on sugar metabolism and abscission of fruitlet in ‘Shatangju’ under summer shoot growth condition[J]. Chinese Journal of Tropical Crops,2019,40(8):1522−1528.
|
[19] |
徐昌杰,张上隆. 柑橘幼果发育期碳水化合物代谢及其与生长发育的关系[J]. 果树学报,2001,18(1):20−23.
Xu CJ,Zhang SL. Carbohydrate metabolism of citrus fruitlets in relation to growth and abscission[J]. Journal of Fruit Science,2001,18(1):20−23.
|
[20] |
Botton A,Eccher G,Forcato C,Ferrarini A,Begheldo M,et al. Signaling pathways mediating the induction of apple fruitlet abscission[J]. Plant Physiol,2011,155(1):185−208. doi: 10.1104/pp.110.165779
|
[21] |
潘瑞炽. 植物生理学[M]. 6版. 北京: 高等教育出版社, 2008: 184-188.
|
[22] |
Kim D,Langmead B,Salzberg SL. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods,2015,12(4):357−360. doi: 10.1038/nmeth.3317
|
[23] |
Carpita NC,Gibeaut DM. Structural models of primary cell walls in flowering plants:consistency of molecular structure with the physical properties of the walls during growth[J]. Plant J,1993,3(1):1−30. doi: 10.1111/j.1365-313X.1993.tb00007.x
|
[24] |
Awad M,Young RE. Postharvest variation in cellulase,polygalacturonase,and pectinmethylesterase in avocado (Persea americana Mill.,cv. Fuerte) fruits in relation to respiration and ethylene production[J]. Plant Physiol,1979,64(2):306−308. doi: 10.1104/pp.64.2.306
|
[25] |
Abbott DW,Boraston AB. The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase[J]. J Mol Biol,2007,368(5):1215−1222. doi: 10.1016/j.jmb.2007.02.083
|
[26] |
敖雁,杨淼焱,张驰,吴启. 番茄果实成熟软化过程中细胞壁作用机制研究进展[J]. 保鲜与加工,2021,21(12):118−125.
Ao Y,Yang MY,Zhang C,Wu Q. Research progress on the mechanisms of cell wall actions during ripening and softening processes of tomato fruits[J]. Storage and Process,2021,21(12):118−125.
|
[27] |
刘化禹,娄爽,秦栋,张妍,谢佳璇,霍俊伟. 蓝果忍冬果柄离区形成中内源激素含量与细胞壁相关酶活性的变化特征[J]. 西北植物学报,2019,39(1):110−120.
Liu HY,Lou S,Qin D,Zhang Y,Xie JX,Huo JW. Characteristics of endogenous hormones and cell wall-related enzymes activities during formation of carpopodium abscission zone in blue honeysuckle[J]. Acta Botanica Boreali-Occidentalia Sinica,2019,39(1):110−120.
|
[28] |
Trainotti L,Rascio N,Casadoro G. Expression of an endopolygalacturonase gene during growth and abscission of peach fruits[J]. Hereditas,1993,119(3):301−304.
|
[29] |
王雪. 观赏海棠果实脱落相关酶活测定及转录组分析[D]. 秦皇岛: 河科技师范学院, 2021: 23-30.
|
[30] |
Xie RJ,Ge T,Zhang J,Pan XT,Ma YY,et al. The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling[J]. Plant Physiol Biochem,2018,130:192−204. doi: 10.1016/j.plaphy.2018.07.006
|
[31] |
葛廷,黄雪,谢让金. 柑橘CitPG34的克隆、定位与表达分析[J]. 中国农业科学,2019,52(19):3404−3416.
Ge T,Huang X,Xie RJ. Cloning,subcellular localization and expression analysis of CitPG34 in citrus[J]. Scientia Agricultura Sinica,2019,52(19):3404−3416.
|
[32] |
Li JG,Yuan RC. NAA and ethylene regulate expression of genes related to ethylene biosynthesis,perception,and cell wall degradation during fruit abscission and ripening in ‘delicious’ apples[J]. J Plant Growth Regul,2008,27(3):283−295. doi: 10.1007/s00344-008-9055-6
|
[33] |
Brummell DA,Harpster MH. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Mol Biol,2001,47(1-2):311−339.
|
[34] |
Horton RF,Osborne DJ. Senescence,abscission and cellulase activity in Phaseolus vulgaris[J]. Nature,1967,214(5093):1086−1088. doi: 10.1038/2141086a0
|
[35] |
Greenberg J,Goren R,Riov J. The role of cellulase and polygalacturonase in abscission of young and mature shamouti orange fruits[J]. Physiol Plant,1975,34(1):1−7. doi: 10.1111/j.1399-3054.1975.tb01845.x
|
[36] |
杨子琴,李茂,章笑赟,余意,王惠聪,黄旭明. 饥饿胁迫对龙眼果实脱落及糖代谢的影响[J]. 果树学报,2011,28(3):428−432.
Yang ZQ,Li M,Zhang XY,Yu Y,Wang HC,Huang XM. Effects of starvation stress on fruit abscission and sugar metabolism in Longan[J]. Journal of Fruit Science,2011,28(3):428−432.
|
[37] |
应培源. 荔枝果实脱落调控因子LcIDL1及转录因子LcKNOX23的功能鉴定及分子机理解析[D]. 广州: 华南农业大学, 2017: 94-112.
|
[38] |
Qiu ZL,Wen Z,Hou QD,Qiao G,Yang K,et al. Cross-talk between transcriptome,phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L.)[J]. BMC Plant Biol,2021,21(1):173. doi: 10.1186/s12870-021-02940-8
|
[39] |
Yi JW,Wang Y,Ma XS,Zhang JQ,Zhao ML,et al. LcERF2 modulates cell wall metabolism by directly targeting a UDP-glucose-4-epimerase gene to regulate pedicel development and fruit abscission of litchi[J]. Plant J,2021,106(3):801−816. doi: 10.1111/tpj.15201
|
[40] |
Johnson PR,Ecker JR. The ethylene gas signal transduction pathway:a molecular perspective[J]. Annu Rev Genet,1998,32:227−254. doi: 10.1146/annurev.genet.32.1.227
|
[41] |
杨晓颖,胡伟,徐碧玉,金志强. 乙烯与果实成熟关系的研究进展[J]. 热带农业科学,2008,28(2):70−75.
Yang XY,Hu W,Xu BY,Jin ZQ. Advances on the relationship between ethylene and fruit ripening[J]. Chinese Journal of Tropical Agriculture,2008,28(2):70−75.
|
[42] |
Beyer EM. Abscission:support for a role of ethylene modification of auxin transport[J]. Plant Physiol,1973,52(1):1−5. doi: 10.1104/pp.52.1.1
|
[43] |
Zhu ZQ,An FY,Feng Y,Li PP,Xue L,et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA,2011,108(30):12539−12544. doi: 10.1073/pnas.1103959108
|
[44] |
Wang X,Liu DM,Li AL,Sun XL,Zhang RZ,et al. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes[J]. PLoS One,2013,8(2):e55238. doi: 10.1371/journal.pone.0055238
|
[45] |
Gil-Amado JA,Gomez-Jimenez MC. Regulation of polyamine metabolism and biosynthetic gene expression during olive mature-fruit abscission[J]. Planta,2012,235(6):1221−1237. doi: 10.1007/s00425-011-1570-1
|
[46] |
郑志慧. 荔枝落果相关LcHAE/HSLs基因的筛选[D]. 广州: 华南农业大学, 2019: 18-34.
|
[47] |
Yildiz K,Ozturk B,Ozkan Y. Effects of aminoethoxyvinylglycine (AVG) on preharvest fruit drop,fruit maturity,and quality of ‘Red Chief’ apple[J]. Sci Hortic,2012,144:121−124. doi: 10.1016/j.scienta.2012.07.005
|
[48] |
Goren R. Anatomical, physiological, and hormonal aspects of abscission in citrus[M]//Janick J, ed. Horticultural Reviews. New York: John Wiley & Sons, Ltd., 1993: 145-182.
|
[49] |
刘进平. 乙烯生物合成关键酶基因研究进展[J]. 热带农业科学,2013,33(1):51−57.
Liu JP. Advances in research on key enzyme genes of ethylene biosynthesis[J]. Chinese Journal of Tropical Agriculture,2013,33(1):51−57.
|
[50] |
Kolarič J,Mavrič Pleško I,Tojnko S,Stopar M. Apple fruitlet ethylene evolution and MdACO1,MdACS5A,and MdACS5B expression after application of naphthaleneacetic acid,6-benzyladenine,ethephon,or shading[J]. HortScience,2011,46(10):1381−1386. doi: 10.21273/HORTSCI.46.10.1381
|
[51] |
Cin VD,Danesin M,Boschetti A,Dorigoni A,Ramina A. Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck)[J]. J Exp Bot,2005,56(421):2995−3005. doi: 10.1093/jxb/eri296
|
[52] |
吴建阳,李彩琴,陆旺金,李建国. 荔枝ACO1基因克隆及其与幼果落果的关系[J]. 果树学报,2013,30(2):207−213.
Wu JY,Li CQ,Lu WJ,Li JG. Cloning of Lc-ACO1 and its expression related to fruitlet abscission in litchi[J]. Journal of Fruit Science,2013,30(2):207−213.
|
[53] |
吴建阳,李彩琴,李建国. 荔枝ACS1基因的分离及其与幼果脱落的关系[J]. 果树学报,2017,34(7):817−827.
Wu JY,Li CQ,Li JG. Isolation of ACS1 gene and the relationship between its expression and fruitlet abscission in litchi[J]. Journal of Fruit Science,2017,34(7):817−827.
|
[54] |
Ma XS,Yuan Y,Li CQ,Wu Q,He ZD,et al. Brassinosteroids suppress ethylene-induced fruitlet abscission through LcBZR1/2-mediated transcriptional repression of LcACS1/4 and LcACO2/3 in litchi[J]. Hortic Res,2021,8(1):105.
|
[55] |
刘元风,李晓方,李玲. 乙烯受体与信号转导成员的研究进展[J]. 生命科学研究,2003(S1):70−74.
Liu YF,Li XF,Li L. Research advances of ethylene receptors and components of the ethylene singal transduction pathway[J]. Life Science Research,2003(S1):70−74.
|
[56] |
牟望舒,应铁进. 植物乙烯信号转导研究进展[J]. 园艺学报,2014,41(9):1895−1912.
Mou WS,Ying TJ. Study progress on ethylene signal transduction[J]. Acta Horticulturae Sinica,2014,41(9):1895−1912.
|
[57] |
Hua J,Chang C,Sun Q,Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene[J]. Science,1995,269(5231):1712−1714. doi: 10.1126/science.7569898
|
[58] |
Ish-Shalom M,Dahan Y,Maayan I,Irihimovitch V. Cloning and molecular characterization of an ethylene receptor gene,MiERS1,expressed during mango fruitlet abscission and fruit ripening[J]. Plant Physiol Biochem,2011,49(8):931−936. doi: 10.1016/j.plaphy.2011.05.010
|
[59] |
徐倩,殷学仁,陈昆松. 基于乙烯受体下游转录因子的果实品质调控机制研究进展[J]. 园艺学报,2014,41(9):1913−1923.
Xu Q,Yin XR,Chen KS. EIN3/EIL and AP2/ERF are involved in transcriptional regulation on fruit quality[J]. Acta Horticulturae Sinica,2014,41(9):1913−1923.
|
[60] |
王彦杰,张超,王晓庆,董丽. 高等植物EIN3/EILs转录因子研究进展[J]. 生物技术通报,2012(3):1−8.
Wang YJ,Zhang C,Wang XQ,Dong L. Research advances of EIN3/EIL transcription factors in higher plants[J]. Biotechnology Bulletin,2012(3):1−8.
|
[61] |
Ma XS,Li CQ,Yuan Y,Zhao ML,Li JG. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi[J]. Physiol Plantarum,2021,173(3):1136−1146. doi: 10.1111/ppl.13509
|
[62] |
Ma XS,Yuan Y,Wu Q,Wang J,Li GJ,Zhao ML. LcEIL2/3 are involved in fruitlet abscission via activating genes related to ethylene biosynthesis and cell wall remodeling in litchi[J]. Plant J,2020,103(4):1338−1350. doi: 10.1111/tpj.14804
|
[63] |
Zhao ML,Li CQ,Ma XS,Xia R,Chen JY,et al. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes[J]. J Exp Bot,2020,71(14):4069−4082. doi: 10.1093/jxb/eraa162
|
[64] |
Nie G,Yang XY,Yang ZF,Zhong MY,Zhu YQ,et al. Genome-wide investigation of the NAC transcript factor family in perennial ryegrass (Lolium perenne L. ) and expression analysis under various abiotic stressor[J]. Genomics,2020,112(6):4224−4231. doi: 10.1016/j.ygeno.2020.06.033
|
[65] |
Li CQ,Wang Y,Ying PY,Ma WQ,Li JG. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi[J]. Front Plant Sci,2015,6:502.
|
[66] |
Zhang JY,Wang T,Zhang F,Liu YZ,Wang G. Comparative analysis of the transcriptomes of persisting and abscised fruitlets:insights into plant hormone and carbohydrate metabolism regulated self-thinning of pecan fruitlets during the early stage[J]. Curr Issues Mol Biol,2021,44(1):176−193. doi: 10.3390/cimb44010013
|
[67] |
Cheng CZ,Zhang LY,Yang XL,Zhong GY. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene[J]. Mol Genet Genomics,2015,290(5):1991−2006. doi: 10.1007/s00438-015-1054-2
|
[68] |
Ferrero S,Carretero-Paulet L,Mendes MA,Botton A,Eccher G,et al. Transcriptomic signatures in seeds of apple(Malus domestica L. Borkh) during fruitlet abscission[J]. PLoS One,2015,10(3):e0120503. doi: 10.1371/journal.pone.0120503
|
[1] | Fan Jinshibo, Zhong Xinxin, Shan Tingyu, Zhang Jingjing, Wang Zhiwei, Wu Jiawen. Identification and analysis of 1R-MYB transcription factors regulating the phenylpropane biosynthesis pathway in Ranunculus japonicus Thunb.[J]. Plant Science Journal, 2024, 42(4): 478-487. DOI: 10.11913/PSJ.2095-0837.23283 |
[2] | Song Songquan, Tang Cuifang, Jiang Xiaocheng, Wang Weiqing, Cheng Hongyan. Research progress on DOG1, a key regulator of seed dormancy and germination[J]. Plant Science Journal, 2024, 42(2): 254-265. DOI: 10.11913/PSJ.2095-0837.23107 |
[3] | Niu Ting-Feng, Ge Li-Ping, Su Yun-Ting, Wang Zhuang-Lin, Li Run-Zhi. Identification and functional analysis of Euphorbia lathyris L. transcription factor ElWRI1[J]. Plant Science Journal, 2023, 41(4): 458-466. DOI: 10.11913/PSJ.2095-0837.22250 |
[4] | Bi Chu-Yun, Huang Xiao-Fang, Wang He-Shou, Chen Qi-Jun, Hu Yun-Zhuo, Huang Bi-Fang, Xu Ming, Yang Zhi-Jian, Chen Xuan-Yang, Lin Shi-Qiang. Identification of TCP transcription factors in Ipomoea batatas (L.) Lam. genome and expression analysis under stress[J]. Plant Science Journal, 2021, 39(2): 163-171. DOI: 10.11913/PSJ.2095-0837.2021.20163 |
[5] | Zhao Cai-Mei, Huang Xing-Qi, Yin Fu-You, Li Ding-Qin, Chen Yue, Chen Ling, Cheng Zai-Quan. Research progress on NAC transcription factor family in Oryza sativa L.[J]. Plant Science Journal, 2020, 38(2): 278-287. DOI: 10.11913/PSJ.2095-0837.2020.20278 |
[6] | Gao Chong-Lun, Huang Jia-Quan, Cheng Shan-Han, Wang Zhi-Wei, Yin Li-Yan. Genome-wide identification of heat stress transcription factors and preliminary analysis of heat stress responses in Capsicum chinense Jacq.[J]. Plant Science Journal, 2020, 38(2): 249-259. DOI: 10.11913/PSJ.2095-0837.2020.20249 |
[7] | Zhang Yu, Xu Zhi-Chao, Ji Ai-Jia, Song Jing-Yuan. Regulation of secondary metabolite biosynthesis by bZIP transcription factors in plants[J]. Plant Science Journal, 2017, 35(1): 128-137. DOI: 10.11913/PSJ.2095-0837.2017.10128 |
[8] | ZHANG Zhi-Fei, YANG Zhi-Jian, ZHOU Qian, ZHAO Zhi-Li. Advanced Study on Gene Expression Regulatory Mechanisms of DREB2s Transcription Factor Gene[J]. Plant Science Journal, 2014, 32(3): 297-303. DOI: 10.3724/SP.J.1142.2014.30297 |
[9] | ZHANG Yu-Bao, XIE Zhong-Kui, LI Tong-Xiang, WANG Ya-Jun, GUO Zhi-Hong, WANG Zhi-Li. Prokaryotic Expression of DREB1A Transcription Factor[J]. Plant Science Journal, 2007, 25(4): 326-330. |
[10] | LIU Wei-Qun, SHI Yong-Chun, HU Ya-Jie, LIU Qiao-Zhen. The Tolerance to Abiotic Stresses Mediated by DREB-like Transcription Factors in Nicotiana tabacum[J]. Plant Science Journal, 2007, 25(3): 222-225. |