Advance Search
Li JJ,Chen YH,Zhou ZH,Wang YJ,Yao X,Guo L. Research progress on mechanisms of plant adaptation to flooding stress[J]. Plant Science Journal,2023,41(6):835−846. DOI: 10.11913/PSJ.2095-0837.23234
Citation: Li JJ,Chen YH,Zhou ZH,Wang YJ,Yao X,Guo L. Research progress on mechanisms of plant adaptation to flooding stress[J]. Plant Science Journal,2023,41(6):835−846. DOI: 10.11913/PSJ.2095-0837.23234

Research progress on mechanisms of plant adaptation to flooding stress

Funds: This work is supported by a grant from the Joint Fund of the National Natural Science Foundation of China(U23A20194).
More Information
  • Received Date: August 06, 2023
  • Revised Date: September 07, 2023
  • Flooding stress constitutes a major abiotic challenge in agricultural production. Flooding stress, including waterlogging and submergence, inhibits plant growth and development through hypoxia, ion toxicity, and energy deficits. As such, plants have evolved various adaptive responses and mechanisms to counter flooding stress under diverse ecological conditions. This review discusses the detrimental effects of flooding stress on plants, as well as the morphological diversity and molecular mechanisms associated with plant adaptation to flooding stress. The genetic strategies for improving plant resistance to flooding stress are also discussed. This review aims to provide guidance for future research into the mechanisms of plant resistance to flooding stress and flooding stress-resistant crop breeding.

  • [1]
    Sasidharan R,Bailey-Serres J,Ashikari M,Atwell BJ,Colmer TD,et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research[J]. New Phytol,2017,214 (4):1403−1407. doi: 10.1111/nph.14519
    [2]
    Setter TL,Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat,barley and oats[J]. Plant Soil,2003,253 (1):1−34. doi: 10.1023/A:1024573305997
    [3]
    Fukao T,Barrera-Figueroa BE,Juntawong P,Peña-Castro JM. Submergence and waterlogging stress in plants:a review highlighting research opportunities and understudied aspects[J]. Front Plant Sci,2019,10:340. doi: 10.3389/fpls.2019.00340
    [4]
    Marschner H. Mechanisms of adaptation of plants to acid soils[J]. Plant Soil,1991,134 (1):1−20. doi: 10.1007/BF00010712
    [5]
    Kirk G. The Biogeochemistry of Submerged Soils[M]. Chichester: Wiley, 2004: 17-44.
    [6]
    Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants:The role of membrane transporters and implications for crop breeding for waterlogging tolerance[J]. New Phytol,2011,190 (2):289−298. doi: 10.1111/j.1469-8137.2010.03575.x
    [7]
    Drew MC,Lynch JM. Soil anaerobiosis,microorganism,and root function[J]. Ann Rev Phytopathol,1980,18:37−66. doi: 10.1146/annurev.py.18.090180.000345
    [8]
    Armstrong J,Armstrong W. Rice and Phragmites:effects of organic acids on growth,root permeability,and radial oxygen loss to the rhizosphere[J]. Am J Bot,2001,88 (8):1359−1370. doi: 10.2307/3558443
    [9]
    Gibbs J,Greenway H. Review:mechanisms of anoxia tolerance in plants. I. Growth,survival and anaerobic catabolism[J]. Funct Plant Biol,2003,30 (1):1−47. doi: 10.1071/PP98095
    [10]
    Sasidharan R,Voesenek LACJ. Ethylene-mediated acclimations to flooding stress[J]. Plant Physiol,2015,169 (1):3−12. doi: 10.1104/pp.15.00387
    [11]
    Colmer TD,Greenway H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency[J]. J Exp Bot,2010,62 (1):39−57.
    [12]
    Mommer L,Visser EJW. Underwater photosynthesis in flooded terrestrial plants:a matter of leaf plasticity[J]. Ann Bot,2005,96 (4):581−589. doi: 10.1093/aob/mci212
    [13]
    Peng YJ,Zhou ZX,Tong RG,Hu XY,Du KB. Anatomy and ultrastructure adaptations to soil flooding of two full-sib poplar clones differing in flood-tolerance[J]. Flora,2017,233:90−98. doi: 10.1016/j.flora.2017.05.014
    [14]
    Mommer L,Pons TL,Wolters-Arts M,Venema JH,Visser EJW. Submergence-induced morphological,anatomical,and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance[J]. Plant Physiol,2005,139 (1):497−508. doi: 10.1104/pp.105.064725
    [15]
    Zhou WJ,Lin XQ. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L. )[J]. Field Crops Res,1995,44 (2-3):103−110. doi: 10.1016/0378-4290(95)00075-5
    [16]
    Ren BZ,Zhang JW,Dong ST,Liu P,Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize[J]. PLoS One,2016,11 (9):e0161424. doi: 10.1371/journal.pone.0161424
    [17]
    Jackson MB,Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biol,1999,1 (3):274−287. doi: 10.1111/j.1438-8677.1999.tb00253.x
    [18]
    Yamauchi T,Colmer TD,Pedersen O,Nakazono M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress[J]. Plant Physiol,2018,176 (2):1118−1130. doi: 10.1104/pp.17.01157
    [19]
    Takahashi H, Yamauchi T, Colmer TD, Nakazono M. Aerenchyma formation in plants[M]//Van Dongen JT, Licausi F, eds. Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia. Vienna: Springer, 2014: 247-265.
    [20]
    Seago JL Jr,Marsh LC,Stevens K J,Soukup A,Votrubova O,et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma[J]. Ann Bot,2005,96 (4):565−579. doi: 10.1093/aob/mci211
    [21]
    Saika H,Okamoto M,Miyoshi K,Kushiro T,Shinoda S,et al. Ethylene promotes submergence-induced expression of OsABA8ox1,a gene that encodes ABA 8′-hydroxylase in rice[J]. Plant Cell Physiol,2007,48 (2):287−298.
    [22]
    Nishiuchi S,Yamauchi T,Takahashi H,Kotula L,Nakazono M. Mechanisms for coping with submergence and waterlogging in rice[J]. Rice,2012,5 (1):2. doi: 10.1186/1939-8433-5-2
    [23]
    Zhang XC,Fan Y,Shabala S,Koutoulis A,Shabala L,et al. A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum)[J]. Theor Appl Genet,2017,130 (8):1559−1568. doi: 10.1007/s00122-017-2910-8
    [24]
    Bailey-Serres J,Voesenek LACJ. Flooding stress:a cclimations and genetic diversity[J]. Annu Rev Plant Biol,2008,59:313−339. doi: 10.1146/annurev.arplant.59.032607.092752
    [25]
    Mühlenbock P,Plaszczyca M,Plaszczyca M,Mellerowicz E,Karpinski S. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1[J]. Plant Cell,2007,19 (11):3819−3830. doi: 10.1105/tpc.106.048843
    [26]
    Sauter M. Root responses to flooding[J]. Curr Opin Plant Biol,2013,16 (3):282−286. doi: 10.1016/j.pbi.2013.03.013
    [27]
    Steffens B,Kovalev A,Gorb SN,Sauter M. Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling[J]. Plant Cell,2012,24 (8):3296−3306. doi: 10.1105/tpc.112.101790
    [28]
    Visser E,Cohen JD,Barendse G,Blom C,Voesenek L. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm[J]. Plant Physiol,1996,112 (4):1687−1692. doi: 10.1104/pp.112.4.1687
    [29]
    Vidoz ML,Loreti E,Mensuali A,Alpi A,Perata P. Hormonal interplay during adventitious root formation in flooded tomato plants[J]. Plant J,2010,63 (4):551−562. doi: 10.1111/j.1365-313X.2010.04262.x
    [30]
    Colmer TD. Long-distance transport of gases in plants:a perspective on internal aeration and radial oxygen loss from roots[J]. Plant,Cell Environ,2003,26 (1):17−36.
    [31]
    Watanabe K,Takahashi H,Sato S,Nishiuchi S,Omori F,et al. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3[J]. Plant Cell Environ,2017,40 (2):304−316. doi: 10.1111/pce.12849
    [32]
    Armstrong W,Cousins D,Armstrong J,Turner DW,Beckett PM. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:a microelectrode and modelling study with Phragmites australis[J]. Ann Bot,2000,86 (3):687−703. doi: 10.1006/anbo.2000.1236
    [33]
    Armstrong J,Armstrong W. Rice:sulfide-induced barriers to root radial oxygen loss,Fe2 + and water uptake,and lateral root emergence[J]. Ann Bot,2005,96 (4):625−638. doi: 10.1093/aob/mci215
    [34]
    Kotula L,Ranathunge K,Schreiber L,Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L. ) grown in aerated or deoxygenated solution[J]. J Exp Bot,2009,60 (7):2155−2167. doi: 10.1093/jxb/erp089
    [35]
    Shiono K,Ogawa S,Yamazaki S,Isoda H,Fujimura T,et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Ann Bot,2011,107 (1):89−99. doi: 10.1093/aob/mcq221
    [36]
    Shiono K,Yamauchi T,Yamazaki S,Mohanty B,Malik AI,et al. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa)[J]. J Exp Bot,2014,65 (17):4795−4806. doi: 10.1093/jxb/eru235
    [37]
    Xu KN,Xu X,Fukao T,Canlas P,Maghirang-Rodriguez R,et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature,2006,442 (7103):705−708. doi: 10.1038/nature04920
    [38]
    Hattori Y,Nagai K,Furukawa S,Song XJ,Kawano R,et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature,2009,460 (7258):1026−1030. doi: 10.1038/nature08258
    [39]
    Kretzschmar T,Pelayo MAF,Trijatmiko KR,Gabunada LFM,Alam R,et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice[J]. Nat Plants,2015,1 (9):15124. doi: 10.1038/nplants.2015.124
    [40]
    Ye NH,Wang FZ,Shi L,Chen MX,Cao YY,et al. Natural variation in the promoter of rice calcineurin B-like protein10 (OsCBL10) affects flooding tolerance during seed germination among rice subspecies[J]. Plant J,2018,94 (4):612−625. doi: 10.1111/tpj.13881
    [41]
    Sun J,Zhang GC,Cui ZB,Kong XM,Yu XY,et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nat Commun,2022,13 (1):5664. doi: 10.1038/s41467-022-33320-x
    [42]
    He YQ,Sun S,Zhao J,Huang ZB,Peng LL,et al. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination[J]. Nat Commun,2023,14 (1):2296. doi: 10.1038/s41467-023-38085-5
    [43]
    Verboven P,Pedersen O,Ho QT,Nicolai BM,Colmer TD. The mechanism of improved aeration due to gas films on leaves of submerged rice[J]. Plant,Cell Environ,2014,37 (10):2433−2452.
    [44]
    Kurokawa Y,Nagai K,Huan PD,Shimazaki K,Qu HQ,et al. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance[J]. New Phytol,2018,218 (4):1558−1569. doi: 10.1111/nph.15070
    [45]
    Bailey-Serres J,Lee SC,Brinton E. Waterproofing crops:effective flooding survival strategies[J]. Plant Physiol,2012,160 (4):1698−1709. doi: 10.1104/pp.112.208173
    [46]
    Hebelstrup KH,van Zanten M,Mandon J,Voesenek LACJ,Harren FJM,et al. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana[J]. J Exp Bot,2012,63 (15):5581−5591. doi: 10.1093/jxb/ers210
    [47]
    Colmer TD,Voesenek LACJ. Flooding tolerance:Suites of plant traits in variable environments[J]. Funct Plant Biol,2009,36 (8):665−681. doi: 10.1071/FP09144
    [48]
    Sasidharan R,Hartman S,Liu ZG,Martopawiro S,Sajeev N,et al. Signal dynamics and interactions during flooding stress[J]. Plant Physiol,2018,176 (2):1106−1117. doi: 10.1104/pp.17.01232
    [49]
    Van der Straeten D,Zhou ZY,Prinsen E,van Onckelen HA,van Montagu MC. A comparative molecular-physiological study of submergence response in lowland and deepwater rice[J]. Plant Physiol,2001,125 (2):955−968. doi: 10.1104/pp.125.2.955
    [50]
    Lee SC,Mustroph A,Sasidharan R,Vashisht D,Pedersen O,et al. Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia[J]. New Phytol,2011,190 (2):457−471. doi: 10.1111/j.1469-8137.2010.03590.x
    [51]
    Van Veen H,Mustroph A,Barding GA,Vergeer-van Eijk M,Welschen-Evertman RAM,et al. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms[J]. Plant Cell,2013,25 (11):4691−4707. doi: 10.1105/tpc.113.119016
    [52]
    Kendrick MD,Chang CR. Ethylene signaling:new levels of complexity and regulation[J]. Curr Opin Plant Biol,2008,11 (5):479−485. doi: 10.1016/j.pbi.2008.06.011
    [53]
    Stepanova AN,Alonso JM. Ethylene signaling and response:where different regulatory modules meet[J]. Curr Opin Plant Biol,2009,12 (5):548−555. doi: 10.1016/j.pbi.2009.07.009
    [54]
    Blom CWPM,Voesenek LACJ. Flooding:the survival strategies of plants[J]. Trends Ecol Evol,1996,11 (7):290−295. doi: 10.1016/0169-5347(96)10034-3
    [55]
    Panozzo A,Dal Cortivo C,Ferrari M,Vicelli B,Varotto S,Vamerali T. Morphological changes and expressions of AOX1A,CYP81D8,and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging[J]. Front Plant Sci,2019,10:62. doi: 10.3389/fpls.2019.00062
    [56]
    Greenway H,Armstrong W,Colmer TD. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism[J]. Ann Bot,2006,98 (1):9−32. doi: 10.1093/aob/mcl076
    [57]
    Gibbs DJ,Lee SC,Md Isa N,Gramuglia S,Fukao T,et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants[J]. Nature,2011,479 (7373):415−418. doi: 10.1038/nature10534
    [58]
    Licausi F,Kosmacz M,Weits DA,Giuntoli B,Giorgi FM,et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization[J]. Nature,2011,479 (7373):419−422. doi: 10.1038/nature10536
    [59]
    Wei XN,Xu HJ,Rong W,Ye XG,Zhang ZY. Constitutive expression of a stabilized transcription factor group Ⅶ ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield[J]. Plant,Cell Environ,2019,42 (5):1471−1485.
    [60]
    Yu F,Liang K,Fang T,Zhao HL,Han XS,et al. A group Ⅶ ethylene response factor gene,ZmEREB180,coordinates waterlogging tolerance in maize seedlings[J]. Plant Biotechnol J,2019,17 (12):2286−2298. doi: 10.1111/pbi.13140
    [61]
    Tang H,Bi H,Liu B,Lou SL,Song Y,et al. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana[J]. New Phytol,2021,229 (1):106−125. doi: 10.1111/nph.17020
    [62]
    Liu B,Jiang YZ,Tang H,Tong SF,Lou SL,et al. The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in Arabidopsis[J]. Plant Cell,2021,33 (5):1771−1789. doi: 10.1093/plcell/koab062
    [63]
    Schmitz AJ,Folsom JJ,Jikamaru Y,Ronald P,Walia H. SUB1A-mediated submergence tolerance response in rice involves differential regulation of the brassinosteroid pathway[J]. New Phytol,2013,198 (4):1060−1070. doi: 10.1111/nph.12202
    [64]
    Xie ZL,Nolan TM,Jiang H,Yin YH. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci,2019,10:228. doi: 10.3389/fpls.2019.00228
    [65]
    Uchida A,Jagendorf AT,Hibino T,Takabe T,Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci,2002,163 (3):515−523. doi: 10.1016/S0168-9452(02)00159-0
    [66]
    Laspina NV,Groppa MD,Tomaro ML,Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress[J]. Plant Sci,2005,169 (2):323−330. doi: 10.1016/j.plantsci.2005.02.007
    [67]
    Mugnai S,Azzarello E,Baluška F,Mancuso S. Local root apex hypoxia induces NO-mediated hypoxic acclimation of the entire root[J]. Plant Cell Physiol,2012,53 (5):912−920. doi: 10.1093/pcp/pcs034
    [68]
    Peng RY,Bian ZY,Zhou LN,Cheng W,Hai N,et al. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L. )[J]. Plant Cell Rep,2016,35 (11):2325−2340. doi: 10.1007/s00299-016-2037-4
    [69]
    Dordas C,Rivoal J,Hill RD. Plant haemoglobins,nitric oxide and hypoxic stress[J]. Ann Bot,2003,91 (2):173−178. doi: 10.1093/aob/mcf115
    [70]
    Planchet E,Jagadis Gupta K,Sonoda M,Kaiser WM. Nitric oxide emission from tobacco leaves and cell suspensions:rate limiting factors and evidence for the involvement of mitochondrial electron transport[J]. Plant J,2005,41 (5):732−743. doi: 10.1111/j.1365-313X.2005.02335.x
    [71]
    Drew MC. Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia[J]. Annu Rev Plant Biol,1997,48:223−250. doi: 10.1146/annurev.arplant.48.1.223
    [72]
    Bologa KL,Fernie AR,Leisse A,Ehlers Loureiro M,Geigenberger P. A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers[J]. Plant Physiol,2003,132 (4):2058−2072. doi: 10.1104/pp.103.022236
    [73]
    Lee KW,Chen PW,Lu CA,Chen S,Ho THD,et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J]. Sci Signal,2009,2 (91):ra61.
    [74]
    Baena-González E. Energy signaling in the regulation of gene expression during stress[J]. Mol Plant,2010,3 (2):300−313. doi: 10.1093/mp/ssp113
    [75]
    Cho YH,Hong JW,Kim EC,Yoo SD. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development[J]. Plant Physiol,2012,158 (4):1955−1964. doi: 10.1104/pp.111.189829
    [76]
    Cho HY,Lu MYJ,Shih MC. The SnRK1-eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence[J]. New Phytol,2019,222 (1):366−381. doi: 10.1111/nph.15589
    [77]
    Møller IM. Plant mitochondria and oxidative stress:electron transport,NADPH turnover,and metabolism of reactive oxygen species[J]. Annu Rev Plant Biol,2001,52:561−591. doi: 10.1146/annurev.arplant.52.1.561
    [78]
    Mignolet-Spruyt L,Xu EJ,Idänheimo N,Hoeberichts FA,Mühlenbock P,et al. Spreading the news:Subcellular and organellar reactive oxygen species production and signalling[J]. J Exp Bot,2016,67 (13):3831−3844. doi: 10.1093/jxb/erw080
    [79]
    Yuan LB,Dai YS,Xie LJ,Yu LJ,Zhou Y,et al. Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis[J]. Plant Physiol,2017,173 (3):1864−1880. doi: 10.1104/pp.16.01803
    [80]
    Hossain Z,López-Climent MF,Arbona V,Pérez-Clemente RM,Gómez-Cadenas A. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage[J]. J Plant Physiol,2009,166 (13):1391−1404. doi: 10.1016/j.jplph.2009.02.012
    [81]
    Steffens B,Steffen-Heins A,Sauter M. Reactive oxygen species mediate growth and death in submerged plants[J]. Front Plant Sci,2013,4:179.
    [82]
    Li CW,Su JS,Zhao N,Lou L,Ou XL,et al. CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium[J]. Plant Biotechnol J,2023,21 (2):270−282. doi: 10.1111/pbi.13940
    [83]
    Foyer CH,Noctor G. Ascorbate and glutathione:the heart of the redox hub[J]. Plant Physiol,2011,155 (1):2−18. doi: 10.1104/pp.110.167569
    [84]
    Ushimaru T,Shibasaka M,Tsuji H. Development of the O2-detoxification system during adaptation to air of submerged rice seedlings[J]. Plant Cell Physiol,1992,33 (8):1065−1071.
    [85]
    Yeung E,van Veen H,Vashisht D,Sobral Paiva AL,Hummel M,et al. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2018,115 (26):E6085−E6094.
    [86]
    Zheng XD,Zhou JZ,Tan DX,Wang N,Wang L,et al. Melatonin improves waterlogging tolerance of Malus baccata (Linn. ) Borkh. Seedlings by maintaining aerobic respiration,photosynthesis and ROS migration[J]. Front Plant Sci,2017,8:483.
    [87]
    Cho HY,Wen TN,Wang YT,Shih MC. Quantitative phosphoproteomics of protein kinase SnRK1 regulated protein phosphorylation in Arabidopsis under submergence[J]. J Exp Bot,2016,67 (9):2745−2760. doi: 10.1093/jxb/erw107
    [88]
    Xu XW,Ji J,Xu Q,Qi XH,Weng YQ,Chen XH. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation[J]. Plant J,2018,93 (5):917−930. doi: 10.1111/tpj.13819
    [89]
    Mackill DJ,Ismail AM,Singh US,Labios RV,Paris TR. Development and rapid adoption of submergence-tolerant (Sub1) rice varieties[J]. Adv Agron,2012,115:299−352.
    [90]
    Kuroha T,Nagai K,Gamuyao R,Wang DR,Furuta T,et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding[J]. Science,2018,361 (6398):181−186. doi: 10.1126/science.aat1577
    [91]
    Hinz M,Wilson IW,Yang J,Buerstenbinder K,Llewellyn D,et al. Arabidopsis RAP2.2:an ethylene response transcription factor that is important for hypoxia survival[J]. Plant Physiol,2010,153 (2):757−772. doi: 10.1104/pp.110.155077
    [92]
    Xie LJ,Yu LJ,Chen QF,Wang FZ,Huang L,et al. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism[J]. Plant J,2015,81 (1):53−67. doi: 10.1111/tpj.12692
    [93]
    Tsai KJ,Lin CY,Ting CY,Shih MC. Ethylene-regulated glutamate dehydrogenase fine-tunes metabolism during anoxia-reoxygenation[J]. Plant Physiol,2016,172 (3):1548−1562. doi: 10.1104/pp.16.00985
    [94]
    Zhou Y,Tan WJ,Xie LJ,Qi H,Yang YC,et al. Polyunsaturated linolenoyl-CoA modulates ERF-Ⅶ-mediated hypoxia signaling in Arabidopsis[J]. J Integr Plant Biol,2020,62 (3):330−348. doi: 10.1111/jipb.12875
  • Related Articles

    [1]Li Li, Pan Hui, Li Wen-Yi, Wang Zu-Peng, Zhong Cai-Hong. Screening of wild Actinidia germplasms resistant to bacterial canker disease in China[J]. Plant Science Journal, 2022, 40(6): 801-809. DOI: 10.11913/PSJ.2095-0837.2022.60801
    [2]Bai Yi-Xiong, Zhao Xiao-Hong, Yao Xiao-Hua, Li Xin, Wu Kun-Lun. Research progress on crop lodging resistance-related traits and mechanism of signal transduction[J]. Plant Science Journal, 2021, 39(1): 102-109. DOI: 10.11913/PSJ.2095-0837.2021.10102
    [3]Wei Tong-Lu, Guo Da-Yong, Xie Zong-Zhou, Liu Ji-Hong. Current advancement on stress resistance and its underlying mechanisms in tetraploid plants[J]. Plant Science Journal, 2017, 35(3): 435-443. DOI: 10.11913/PSJ.2095-0837.2017.30435
    [4]CHI Hong, YUE Ming, LIU Xiao. Physiological Effects on UV-B Resistance of Wheat(Triticum aestivum L.)Seedlings Mediated by Jasmonic Acid[J]. Plant Science Journal, 2011, 29(6): 718-726.
    [5]DONG Zhi-Fang, Hasanjan Abdulla, Abliz Ablimit, Tursun Mamat, Gopur Mijit. Isolation and Identification of Metal Resistance Green Alga[J]. Plant Science Journal, 2010, 28(1): 21-26.
    [6]ZHANG Hong-Ming, ZHAO Shi, GAO Rong-Fu. Molecular Properties of Phytochromes and Their Signalling Mechanism[J]. Plant Science Journal, 2003, 21(6): 537-543.
    [7]WU Zhen-Bin, QIU Dong-Ru, HE Feng, LIU Bao-Yuan, DENG Jia-Qi, ZHAN Fa-Cui. Studies on Eutrophicated Water Quality Improvement by means of Aquatic Macrophytes[J]. Plant Science Journal, 2001, 19(4): 299-303.
    [8]WANG Li, WANG Sheng-Mei, HUANG Hong-Wen. Graft Compatibility among Actinidia Species and Screening Rootstocks Resistant to Root-Knot Nematodes[J]. Plant Science Journal, 2001, 19(1): 47-51.
    [9]Li Jing, Li Rongqian, Zeng Zishen, Wang Jianbo. MICROSCOPICAL AND ULTRASTRUCTURAL STUDIES ON THE RESISTANCE OF CUCUMBER TO PSEUDOPERONOSPORA CUBENSIS[J]. Plant Science Journal, 1991, 9(3): 209-214.
    [10]Xu Naiyu. RESISTANT PLANTS BREEDING BY MEANS OF CELL/TISSUE CULTURE[J]. Plant Science Journal, 1987, 5(3): 299-302.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (322) PDF downloads (159) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return