Citation: | Ai Y,Liu HK,Yu LH,Hu M,Dang HS. Study on non-structural carbohydrate allocation strategies of psammophytes induced by drought stress in southeastern Xizang[J]. Plant Science Journal,2024,42(5):602−611. DOI: 10.11913/PSJ.2095-0837.23371 |
The content of non-structural carbohydrates (NSC) in different plant tissues reflects the energy allocation strategies within plant individuals. Understanding the dynamic changes in NSC under drought stress can provide insights into how plants manage resource distribution in drought conditions. In this study, two psammophyte species from southeastern Xizang (Artemisia gmelinii Weber and Hippophae rhamnoides subsp. Yunnanensis Rousi) were selected to explore the distribution dynamics of NSC in different organs (leaves, branches, coarse roots, and fine roots) under varying drought intensities. Results showed that: (1) Intensified drought stress significantly increased the root-to-shoot ratio and the accumulation of soluble sugars and NSC in branches, coarse roots, and fine roots; (2) Under drought stress, there was a preferential allocation of NSC to underground parts, with leaves and fine roots primarily accumulating NSC in the form of soluble sugars; (3) In the fine roots of A. gmelinii, the proportion of soluble sugars, starch, and NSC decreased with intensifying drought, whereas in H. yunnanensis, the proportion of soluble sugars, starch, and NSC increased with intensifying drought. This study suggests that plants mitigate drought stress by storing more soluble sugars and enhance their drought resilience by allocating more NSC to the roots.
[1] |
Kozlowski TT. Carbohydrate sources and sinks in woody plants[J]. Bot Rev,1992,58(2):107−222. doi: 10.1007/BF02858600
|
[2] |
Würth MKR,Peláez-Riedl S,Wright SJ,Körner C. Non-structural carbohydrate pools in a tropical forest[J]. Oecologia,2005,143(1):11−24. doi: 10.1007/s00442-004-1773-2
|
[3] |
Myers JA,Kitajima K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. J Ecol,2007,95(2):383−395. doi: 10.1111/j.1365-2745.2006.01207.x
|
[4] |
Hoch G,Richter A,Körner C. Non-structural carbon compounds in temperate forest trees[J]. Plant Cell Environ,2003,26(7):1067−1081. doi: 10.1046/j.0016-8025.2003.01032.x
|
[5] |
Barbaroux C,Bréda N,Dufrêne E. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica)[J]. New Phytol,2003,157(3):605−615. doi: 10.1046/j.1469-8137.2003.00681.x
|
[6] |
Cannell MGR,Dewar RC. Carbon allocation in trees:a review of concepts for modelling[J]. Adv Ecol Res,1994,25:59−104.
|
[7] |
Cooper DJ,D'amico DR,Scott ML. Physiological and morphological response patterns of Populus deltoides to alluvial groundwater pumping[J]. Environ Manage,2003,31(2):215−226. doi: 10.1007/s00267-002-2808-2
|
[8] |
Yang XY,Lu MQ,Wang YF,Wang YR,Liu ZJ,Chen S. Response mechanism of plants to drought stress[J]. Horticulturae,2021,7(3):50. doi: 10.3390/horticulturae7030050
|
[9] |
刘亚楠,陈晓娜,郭跃,段娜,郝需婷,等. 沙旱生灌木对干旱胁迫的响应研究进展[J]. 世界林业研究,2023,36(5):21−26.
Liu YN,Chen XN,Guo Y,Duan N,Hao XT,et al. Research progress in response of sandy xerophytic shrubs to drought stress[J]. World Forestry Research,2023,36(5):21−26.
|
[10] |
魏晓芸. 干旱胁迫下红砂幼苗的生理和转录组学分析[D]. 兰州:甘肃农业大学,2021:1−10.
|
[11] |
王雅芸. 梭梭与骆驼刺水分运输和碳代谢特征对干旱胁迫的响应[D]. 乌鲁木齐:新疆大学,2021:1−10.
|
[12] |
Chen YJ,Choat B,Sterck F,Maenpuen P,Katabuchi M,et al. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form[J]. Ecol Lett,2021,24(11):2350−2363. doi: 10.1111/ele.13856
|
[13] |
段娜,王佳,刘芳,陈海玲,孙非,徐军. 植物抗旱性研究进展[J]. 分子植物育种,2018,16(15):5093−5099
Duan N,Wang J,Liu F,Chen HL,Sun F,Xu J. Research progress on drought resistance of plant[J]. Molecular Plant Breeding,2018,16(15):5093−5099.
|
[14] |
张耀甲. 甘肃民勤地区主要沙区植物的生态生理特性[J]. 生态学杂志,1984(1):1−4,54.
Zhang YJ. Ecological and physiological characteristics of main desert plants in Minqin district of Gansu Province[J]. Chinese Journal of Ecology,1984(1):1−4,54.
|
[15] |
张恒硕,查同刚,李肖,彭栋,冀晓东,等. 冀北地区6种灌木对干旱胁迫的光合及生理响应[J]. 生态学杂志,2021,40(2):352−362.
Zhang HS,Zha TG,Li X,Peng D,Ji XD,et al. Photosynthetic and physiological responses of six shrub species to drought dress in northern Hebei Province[J]. Chinese Journal of Ecology,2021,40(2):352−362.
|
[16] |
张玉,冷海楠,曹宏杰,徐明怡. 干旱胁迫对植物的影响研究[J]. 黑龙江科学,2022,13(14):22−24,47.
Zhang Y,Leng HN,Cao HJ,Xu MY. Study on the influence of drought stress on botany[J]. Heilongjiang Science,2022,13(14):22−24,47.
|
[17] |
何建社,张利,刘千里,朱欣伟,刘兴良,等. 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应[J]. 生态学报,2018,38(7):2362−2371.
He JS,Zhang L,Liu QL,Zhu XW,Liu XL,et al. Physiological and biochemical response of typical shrubs to drought stress in the Minjiang River dry valley[J]. Acta Ecologica Sinica,2018,38(7):2362−2371.
|
[18] |
李佳泳. 川西北高寒区治沙灌木的筛选及其抗旱性研究[D]. 雅安:四川农业大学,2020:1−10.
|
[19] |
Li WB,Hartmann H,Adams HD,Adams HX,Zhang C,et al. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought,elevated CO2 and nitrogen fertilization in tree species[J]. Tree Physiol,2018,38(11):1706−1723.
|
[20] |
Dickman LT,McDowell NG,Grossiord C,Collins AD,Wolfe BT,et al. Homoeostatic maintenance of nonstructural carbohydrates during the 2015-2016 El Niño drought across a tropical forest precipitation gradient[J]. Plant Cell Environ,2019,42(5):1705−1714. doi: 10.1111/pce.13501
|
[21] |
Adams HD,Germino MJ,Breshears DD,Barron-Gafford GA,Guardiola-Claramonte M,et al. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism[J]. New Phytol,2013,197(4):1142−1151. doi: 10.1111/nph.12102
|
[22] |
Correia B,Hancork RD,Amaral J,Gomez-Cadenas A,Vallendor L,Pinto G. Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone[J]. Front Plant Sci,2018,9:819. doi: 10.3389/fpls.2018.00819
|
[23] |
Liu HY,Shang-Guan HL,Zhou M,Airebule P,Zhao PW,et al. Differentiated responses of nonstructural carbohydrate allocation to climatic dryness and drought events in the Inner Asian arid timberline[J]. Agric For Meteorol,2019,271:355−361. doi: 10.1016/j.agrformet.2019.03.008
|
[24] |
Jin YQ,Li J,Liu CG,Liu YT,Zhang YP,et al. Carbohydrate dynamics of three dominant species in a Chinese savanna under precipitation exclusion[J]. Tree Physiol,2018,38(9):1371−1383. doi: 10.1093/treephys/tpy017
|
[25] |
Latt CR,Nair PKR,Kang BT. Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate[J]. For Ecol Manage,2001,146(1-3):145−158. doi: 10.1016/S0378-1127(00)00456-4
|
[26] |
Dietze MC,Sala A,Carbone MS,Czimczik CI,Mantooth JA,et al. Nonstructural carbon in woody plants[J]. Annu Rev Plant Biol,2014,65:667−687. doi: 10.1146/annurev-arplant-050213-040054
|
[27] |
Kannenberg SA,Novick KA,Phillips RP. Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species[J]. Tree Physiol,2018,38(4):582−590. doi: 10.1093/treephys/tpx119
|
[28] |
Reinhardt K,Germino MJ,Kueppers LM,Domec JC,Mitton J. Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings[J]. Tree Physiol,2015,35(7):771−782. doi: 10.1093/treephys/tpv045
|
[29] |
Anderegg WRL. Complex aspen forest carbon and root dynamics during drought:a letter[J]. Climatic Change,2012,111(3-4):983−991. doi: 10.1007/s10584-012-0421-9
|
[30] |
Nikinmaa E,Hölttä T,Hari P,Kolari P,Mäkelä A,et al. Assimilate transport in phloem sets conditions for leaf gas exchange[J]. Plant Cell Environ,2013,36(3):655−669. doi: 10.1111/pce.12004
|
[31] |
Royo A,Gil L,Pardos JA. Effect of water stress conditioning on morphology,physiology and field performance of Pinus halepensis Mill. seedlings[J]. New For,2001,21(2):127−140. doi: 10.1023/A:1011892732084
|
[32] |
Chapin FS,Schulze E,Mooney HA. The ecology and economics of storage in plants[J]. Annu Rev Ecol Syst,1990,21:423−447. doi: 10.1146/annurev.es.21.110190.002231
|
[33] |
Piper FI. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance[J]. Ann For Sci,2011,68(2):415−24. doi: 10.1007/s13595-011-0030-1
|
[34] |
南吉斌,杨广环,吴天彧,林玲. 西藏3种沙棘属植物抗旱性比较研究[J]. 西北农林科技大学学报(自然科学版),2021,49(1):37−47.
Nan JB,Yang GH,Wu TY,Lin L. Comparison of drought resistance of three Hippophae species in Tibet[J]. Journal of Northwest A&F University (Natural Science Edition),2021,49(1):37−47.
|
[35] |
周帅,杨依康,李国营,林玲. 西藏5种沙棘属植物根形态和解剖结构比较研究[J]. 高原农业,2023,7(2):178−186.
Zhou S,Yang YK,Li GY,Lin L. Comparative study on root morphology and anatomical structure of five species of Hippophae in Tibet[J]. Journal of Plateau Agriculture,2023,7(2):178−186.
|
[36] |
Zhang HY,Wang CK,Wang XC. Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species[J]. Trees,2014,28(1):77−89. doi: 10.1007/s00468-013-0931-8
|
[37] |
Chow PS,Landhäusser SM. A method for routine measurements of total sugar and starch content in woody plant tissues[J]. Tree Physiol,2004,24(10):1129−1136. doi: 10.1093/treephys/24.10.1129
|
[38] |
He WQ,Liu HY,Qi Y,Liu F,Zhu XR. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration[J]. Global Change Biol,2020,26(6):3627−3638. doi: 10.1111/gcb.15078
|
[39] |
Fox H,Ben-Dor S,Doron-Faigenboim A,Goldsmith M,Klein T,David-Schwartz R. Carbohydrate dynamics in Populus trees under drought:an expression atlas of genes related to sensing,translocation,and metabolism across organs[J]. Physiol Plant,2023,175(5):e14001. doi: 10.1111/ppl.14001
|
[40] |
Blumstein M,Gersony J,Martínez-Vilalta J,Sala A. Global variation in nonstructural carbohydrate stores in response to climate[J]. Global Change Biol,2023,29(7):1854−1869. doi: 10.1111/gcb.16573
|
[41] |
Singh V,Gupta K,Singh S,Jain M,Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis[J]. Front Plant Sci,2023,14:19.
|
[42] |
师亚婷,单立山,解婷婷,马静,杨洁,王红永. 干旱胁迫下红砂幼苗非结构性碳水化合物动态变化特征[J]. 西北植物学报,2023,43(1):116−126.
Shi YT,Shan LS,Xie TT,Ma J,Yang J,Wang HY. Dynamic changes of non-structural carbohydrate in Reaumuria soongorica seedlings under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2023,43(1):116−126.
|
[43] |
陈图强,徐贵青,刘深思,李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报,2023,47(10):1407−1421. doi: 10.17521/cjpe.2022.0276
Chen TQ,Xu GQ,Liu SS,Li Y. Hydraulic traits adjustments and nonstructural carbohydrate dynamics of Haloxylon ammodendron under drought stress[J]. Chinese Journal of Plant Ecology,2023,47(10):1407−1421. doi: 10.17521/cjpe.2022.0276
|
[44] |
Hartmann H,Ziegler W,Kolle O,Trumbore S. Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings[J]. New Phytol,2013,200(2):340−349. doi: 10.1111/nph.12331
|
[45] |
Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant Cell Environ,2017,40(1):4−10. doi: 10.1111/pce.12800
|
[46] |
Von Arx G,Archer SR,Hughes MK. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture[J]. Ann Bot,2012,109(6):1091−1100. doi: 10.1093/aob/mcs030
|
[47] |
杨诗敏,骆金初,谭钠丹,李旭,罗焓毓,等. 不同强度干旱胁迫对华南地区4种乡土树种生长和碳氮磷化学计量特征的影响[J]. 应用与环境生物学报,2024,30(1):75−82.
Yang SM,Luo JC,Tan ND,Li X,Luo HY,et al. Effects of drought stress on growth,nutrient content,and stoichiometry of four native tree species in South China[J]. Chinese Journal of Applied & Environmental Biology,2024,30(1):75−82.
|
[48] |
Subbarao GV,Chauhan YS,Johansen C. Patterns of osmotic adjustment in pigeonpea-its importance as a mechanism of drought resistance[J]. Eur J Agron,2000,12(3-4):239−249. doi: 10.1016/S1161-0301(00)00050-2
|
[49] |
Van der Heyden F,Stock WD. Regrowth of a semiarid shrub following simulated browsing:the role of reserve carbon[J]. Funct Ecol,1996,10(5):647−653. doi: 10.2307/2390175
|
[50] |
王雲霞,单立山,解婷婷,马静,师亚婷. 干旱-复水对红砂幼苗各器官非结构性碳水化合物的影响[J]. 生态学杂志,2024,43(2):383−394.
Wang YX,Shan LS,Xie TT,Ma J,Shi YT. The effects of drought-rehydration on non-structural carbohydrates in Reaumuria soongorica seedlings[J]. Chinese Journal of Ecology,2024,43(2):383−394.
|
[51] |
Hummel I,Pantin F,Sulpice R,Piques M,Rolland G,et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage:an integrated perspective using growth,metabolite,enzyme,and gene expression analysis[J]. Plant Physiol,2010,154(1):357−372. doi: 10.1104/pp.110.157008
|
[52] |
Wang ZG,Wang CK. Individual and interactive responses of woody plants' biomass and leaf traits to drought and shade[J]. Global Ecol Biogeogra,2023,32(1):35−48. doi: 10.1111/geb.13615
|
[53] |
张婷,曹扬,陈云明,刘国彬. 生长季末期干旱胁迫对刺槐幼苗非结构性碳水化合物的影响[J]. 水土保持学报,2016,30(5):297−304.
Zhang T,Cao Y,Chen YM,Liu GB. Effects of drought stress on non-structural carbohydrates of Robinia pseudoacacia saplings at the end of the growing season[J]. Journal of Soil and Water Conservation,2016,30(5):297−304.
|
[54] |
Kozlowski TT,Pallardy SG. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Bot Rev,2002,68(2):270−334. doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
|
[55] |
Zhao YJ,Wang DF,Duan HL. Effects of drought and flooding on growth and physiology of Cinnamomum camphora seedlings[J]. Forests,2023,14(7):1343. doi: 10.3390/f14071343
|
[56] |
Martínez-Vilalta J,Sala A,Asensio D,Galiano L,Hoch G,et al. Dynamics of non-structural carbohydrates in terrestrial plants:a global synthesis[J]. Ecol Monogr,2016,86(4):495−516. doi: 10.1002/ecm.1231
|