Citation: | Jiang YH,Wang M,Chen L,Chen QM,Xu JZ,Yao LY,Sen L,Yu K. Degradation mechanism of tissue culture seedlings during the subculture process in Atractylodes lancea (Thunb.) DC.[J]. Plant Science Journal,2025,43(2):273−282. DOI: 10.11913/PSJ.2095-0837.24059 |
This study investigated the effects of prolonged subculture on Atractylodes lancea tissue culture seedlings by examining morphological, physiological, biochemical, and transcriptomic changes across the third, tenth, and seventeenth subculture generations. Results indicated that: (1) With increasing subculture generations, growth rates declined, and seedlings exhibited reduced biomass, height, and leaf length-to-width ratios, indicative of phenotypic degradation. (2) Telomerase reverse transcriptase activity and chlorophyll fluorescence parameters (Fo and Fm) decreased, while soluble sugar, hydrogen peroxide (H2O2), malondialdehyde (MDA), and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased. (3) Levels of endogenous hormones, including indole-3-acetic acid (IAA), cytokinin (CTK), and gibberellin (GA3), also increased significantly with successive subcultures, indicating a progressive degree of hormonal dysregulation and degradation. (4) Transcriptome analysis revealed inhibition of fatty acid degradation, down-regulation of genes associated with the mevalonate (MVA) pathway, and blockade of acetyl coenzyme A synthesis. Genes associated with the gibberellin and ethylene pathways were down-regulated, while those related to the abscisic acid and auxin pathways were up-regulated. These disruptions in hormone metabolism and associated physiological processes contributed to metabolic imbalances and molecular-level degradation. Overall, prolonged subculture led to morphological atrophy, metabolic disturbances, accumulation of stress substances, inhibition of primary metabolic processes such as fatty acid degradation and secondary metabolite biosynthesis, and dysregulation of genes related to hormone signal transduction pathways. These combined effects culminated in the progressive degradation of A. lancea tissue culture seedlings.
[1] |
刘玲梅,汤浩茹,刘娟. 试管苗长期继代培养中的形态发生能力与遗传稳定性[J]. 生物技术通报,2008(5):22−27.
Liu LM,Tang HR,Liu J. Morphogenetic capacity and genetic stability of tissue in vitro cultures in long-term subculturing[J]. Biotechnology Bulletin,2008(5):22−27.
|
[2] |
薛美凤,郭余龙,李名扬,裴炎. 长期继代对棉花胚性愈伤组织体胚发生能力及再生植株变异的影响[J]. 西南农业学报,2002,15(4):19−21.
Xue MF,Guo YL,Li MY,Pei Y. Effects of long-term subculture on embryogenesis capability of cotton callus and somatic variation[J]. Southwest China Journal of Agricultural Sciences,2002,15(4):19−21.
|
[3] |
王艳丽,孙婷玉,沈李元,吴小芹,叶建仁,朱丽华. 继代培养时间对抗性黑松体胚发生的影响[J]. 西南林业大学学报,2019,39(2):78−85.
Wang YL,Sun TY,Shen LY,Wu XQ,Ye JR,Zhu LH. Effects of subculture time on somatic embryogenesis of nematode-resistant Pinus thunbergii[J]. Journal of Southwest Forestry University,2019,39(2):78−85.
|
[4] |
Wang X,Gao YG,Zang P,Zhang G,Yang XY,Liu Q. Decrease in beneficial bacteria and increase in harmful bacteria in Gastrodia seedlings and their surrounding soil are mainly responsible for degradation of Gastrodia asexual propagation[J]. Front Plant Sci,2024,15:1334958. doi: 10.3389/fpls.2024.1334958
|
[5] |
都晓龙,孙春玉,张美萍,王义. 继代次数对吉粳88愈伤组织生理生化指标及细胞形态的影响[J]. 安徽农业科学,2016,44(5):155−158.
Du XL,Sun CY,Zhang MP,Wang Y. Effects of transgenerational times on rice (Jijing88) callus physio-biochemistry indexes and the cell morphology[J]. Journal of Anhui Agricultural Sciences,2016,44(5):155−158.
|
[6] |
王胤,姚瑞玲. 继代培养中马尾松生根能力及其与内源激素含量的相关分析[J]. 林业科学,2020,56(8):38−46.
Wang Y,Yao RL. Rooting capacity of Pinus massoniana and the correlations endohormones levels during subcultur[J]. Scientia Silvae Sinicae,2020,56(8):38−46.
|
[7] |
董静,段秋笛,徐艳红,周美琪,梁宏伟. 长期继代培养过程中楸树愈伤组织的分化能力[J]. 西北农业学报,2024,33(2):373−379.
Dong J,Duan QD,Xu YH,Zhou MQ,Liang HW. Differentiation ability of Catalpa bungei callus in long term subculture[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2024,33(2):373−379.
|
[8] |
国家药典委员会. 中华人民共和国药典:2020年版(一部)[S]. 北京:中国医药科技出版社,2020:168.
|
[9] |
Zhao JH,Sun CZ,Shi FY,Ma SS,Zheng JS,et al. Comparative transcriptome analysis reveals sesquiterpenoid biosynthesis among 1-,2- and 3-year old Atractylodes chinensis[J]. BMC Plant Biol,2021,21(1):354. doi: 10.1186/s12870-021-03131-1
|
[10] |
高真. 茅苍术工厂化育苗技术体系及试管苗继代遗传稳定性研究[D]. 南京:南京农业大学,2022:3.
|
[11] |
王学奎. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2006:202−204.
|
[12] |
王学奎. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2006:190−191.
|
[13] |
Thomas VC,Kinkead LC,Janssen A,Schaeffer CR,Woods KM,et al. A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during β-lactam stress[J]. mBio,2013,4(4):e00437−13.
|
[14] |
李昕儒,高宇,苗淑楠,李腾,董书言,等. 油莎豆生长素受体TIR1基因家族鉴定及响应盐胁迫和外源IBA的表达分析[J]. 热带作物学报,2023,44(5):894−904.
Li XR,Gao Y,Miao SN,Li T,Dong SY,et al. Identification of auxin receptor gene TIR1 family in Cyperus esculentus and the expression analysis in response to salt stress and exogenous IBA[J]. Chinese Journal of Tropical Crops,2023,44(5):894−904.
|
[15] |
王恩莹,晁琳珂,郝素晓,卢艳芬,姚允聪. 苹果矮化中间砧“SH6”中GID2基因的克隆及生物信息学分析[J]. 安徽农业科学,2021,49(9):104−108,112.
Wang EY,Chao LK,Hao SX,Lu YF,Yao YC. Cloning and bioinformatics analysis of GID2 gene in apple dwarfing interstock“SH6”[J]. Journal of Anhui Agricultural Sciences,2021,49(9):104−108,112.
|
[16] |
吴丹丹,胡容,赵强. EIN2蛋白的研究进展[J]. 植物生理学报,2023,59(9):1694−1700.
Wu DD,Hu R,Zhao Q. Advances in research on EIN2 protein[J]. Plant Physiology Journal,2023,59(9):1694−1700.
|
[17] |
Tsukaya H. Leaf shape:genetic controls and environmental factors[J]. Int J Dev Biol,2005,49(5-6):547−555. doi: 10.1387/ijdb.041921ht
|
[18] |
邓平,吴敏,林丁,赵英,陆海娇,岑英. 干旱-复水对桂西北喀斯特地区青冈栎幼苗叶片光合能力、叶绿素荧光和显微结构的影响[J]. 西北植物学报,2024,44(1):63−76.
Deng P,Wu M,Lin D,Zhao Y,Lu HJ,Cen Y. Effects of drought-rehydration on photosynthetic capacity,chlorophyll fluorescence,and microstructure of Cyclobalanopsis glauca seedling leaves in Karst area of northwest Guangxi[J]. Acta Botanica Boreali-Occidentalia Sinica,2024,44(1):63−76.
|
[19] |
Zafari S,Niknam V,Musetti R,Noorbakhsh SN. Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia)[J]. Acta Physiol Plant,2012,34(2):561−568. doi: 10.1007/s11738-011-0855-0
|
[20] |
Zhao FY,Liu XX,Chen C,Cheng ZH,Wang WP,Yun JM. Successive mycelial subculturing decreased lignocellulase activity and increased ROS accumulation in Volvariella volvacea[J]. Front Microbiol,2022,13:997485. doi: 10.3389/fmicb.2022.997485
|
[21] |
Wu W,Wan XJ,Shah F,Fahad S,Huang JL. The role of antioxidant enzymes in adaptive responses to sheath blight infestation under different fertilization rates and hill densities[J]. Sci World J,2014,2014:502134.
|
[22] |
莫秋霞. 羽枝青藓的继代扩繁效率演变特征与定植适宜性代际差异[D]. 杨凌:西北农林科技大学,2023:49.
|
[23] |
De la Torre Espinosa Z,de Dios EÁ,Sánchez Teyer F,Castano E. AteqTERT expression and specific tissue activity in a 2-year-old complete plant in Agave tequilana in field conditions[J]. Braz J Bot,2020,43(4):869−881. doi: 10.1007/s40415-020-00642-3
|