Advance Search
Zhou XR,Zhou YC,Liu X,Liu CH,Yang C. Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells[J]. Plant Science Journal,2025,43(2):230−241. DOI: 10.11913/PSJ.2095-0837.24104
Citation: Zhou XR,Zhou YC,Liu X,Liu CH,Yang C. Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells[J]. Plant Science Journal,2025,43(2):230−241. DOI: 10.11913/PSJ.2095-0837.24104

Metabolomic analysis of the effects of MeJA on antioxidant compound synthesis in Lavandula angustifolia Mill. cells

More Information
  • Received Date: April 18, 2024
  • Accepted Date: June 21, 2024
  • The effects of methyl jasmonate (MeJA) on the synthesis of antioxidant compounds in Lavandula angustifolia Mill. leaf suspension cells were investigated by introducing varying concentrations of MeJA into the culture medium. The optimal conditions for enhancing antioxidant synthesis were determined, and non-targeted metabolomics was employed to analyze the impact of MeJA on metabolite production. Results demonstrated that 8 mg/L MeJA inhibited both cell growth and antioxidant activity, whereas 2 mg/L MeJA significantly promoted the biosynthesis of antioxidant compounds. Compared with the untreated group, cells treated with 2 mg/L MeJA exhibited a 1.30-fold increase in ABTS radical scavenging activity and a 2.56-fold increase in ferric reducing antioxidant power (FRAP). Additionally, total phenol, flavonoid, and triterpene contents were elevated by 1.45-fold, 1.59-fold, and 1.24-fold, respectively. Metabolomic profiling using UHPLC-Q-TOF-MS identified 1 403 metabolites, with 151 showing significant differences between untreated and MeJA-treated cells. These differential metabolites were associated with 177 metabolic pathways, predominantly enriched in metabolic pathways and ABC transporter pathways. These findings suggest that MeJA modulates antioxidant biosynthesis in L. angustifolia suspension cells primarily by influencing metabolic signal transduction and regulating ABC transporter activity.

  • [1]
    Habán M,Korczyk-szabó J,Čerteková S,Ražná K. Lavandula species,their bioactive phytochemicals,and their biosynthetic regulation[J]. Int J Mol Sci,2023,24(10):8831. doi: 10.3390/ijms24108831
    [2]
    Dobros N,Zawada KD,Paradowska K. Phytochemical profiling,antioxidant and anti-inflammatory activity of plants belonging to the Lavandula genus[J]. Molecules,2022,28(1):256. doi: 10.3390/molecules28010256
    [3]
    Diass K,Merzouki M,Elfazazi K,Azzouzi H,Challioui A,et al. Essential oil of Lavandula officinalis:Chemical composition and antibacterial activities[J]. Plants (Basel),2023,12(7):1571. doi: 10.3390/plants12071571
    [4]
    陈日道,段瑞刚,邹建华,李军伟,刘晓月,等. 八角莲愈伤组织中黄酮苷类化学成分研究[J]. 中国中药杂志,2016,41(1):87−91.

    Chen RD,Duan RG,Zou JH,Li JW,Liu XY,et al. Flavonoid glycosides from callus cultures of Dysosma versipellis[J]. China Journal of Chinese Materia Medica,2016,41(1):87−91.
    [5]
    Guerriero G,Berni R,Armando Muñoz-Sanchez J,Apone F,Abdel-Salam EM,et al. Production of plant secondary metabolites:examples,tips and suggestions for biotechnologists[J]. Genes (Basel),2018,9(6):309. doi: 10.3390/genes9060309
    [6]
    冯晓晖,闫学彤,郑珂媛,周强,张伟中,等. 富含紫杉烷类红豆杉的离体培养[J]. 植物学报,2023,58(6):917−925. doi: 10.11983/CBB22228

    Feng XH,Yan XT,Zhen KY,Zhou Q,Zhang WZ,et al. In vitro culture of Taxus rich in taxanes[J]. Chinese Bulletin of Botany,2023,58(6):917−925. doi: 10.11983/CBB22228
    [7]
    Xu F,Valappil AK,Mathiyalagan R,Tran TNA,Ramadhania ZM,et al. In vitro cultivation and ginsenosides accumulation in Panax ginseng:a review[J]. Plants (Basel),2023,12(17):3165. doi: 10.3390/plants12173165
    [8]
    Luo C,Qiu JF,Zhang Y,Li MY,Liu P. Jasmonates coordinate secondary with primary metabolism[J]. Metabolites,2023,13(9):1008. doi: 10.3390/metabo13091008
    [9]
    Serna-escolano V,Valverde JM,García-pastor ME,Valero D,Castillo S,et al. Pre-harvest methyl jasmonate treatments increase antioxidant systems in lemon fruit without affecting yield or other fruit quality parameters[J]. J Sci Food Agric,2019,99(11):5035−5043. doi: 10.1002/jsfa.9746
    [10]
    Durand M,Besseau S,Papon N,Courdavault V. Unlocking plant bioactive pathways:omics data harnessing and machine learning assisting[J]. Curr Opin Biotechnol,2024,87:103135. doi: 10.1016/j.copbio.2024.103135
    [11]
    Durmaz G. Freeze-dried ABTS+ method:a ready-to-use radical powder to assess antioxidant capacity of vegetable oils[J]. Food Chem,2012,133(4):1658−1663. doi: 10.1016/j.foodchem.2012.02.064
    [12]
    Benzie IF,Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”:The FRAP assay[J]. Anal Biochem,1996,239(1):70−76. doi: 10.1006/abio.1996.0292
    [13]
    林月乔,张子桦,续文丽,李楠,刘辉,陈鑫. 莽吉柿果壳不同萃取物中总黄酮、总酚含量及抗菌活性[J]. 食品工业,2022,43(12):130−133.

    Lin YQ,Zhang ZH,Xu WL,Li N,Liu H,Chen X. Content of total flavonoids,phenols and its antibacterial activities of different extracts from Garcinia mangostana[J]. The Food Industry,2022,43(12):130−133.
    [14]
    黄梅桂,徐云巧,张忠明,应瑞峰,王耀松,王强. 薰衣草残渣中黄酮的超声辅助提取工艺及其抗氧化活性[J]. 食品工业科技,2018,39(1):214−220.

    Huang MG,Xu YQ,Zhang ZM,Ying RF,Wang YS,Wang Q. Flavonoids extracted by ultrasonic assisted method from lavender residue and its antioxidant activity[J]. Science and Technology of Food Industry,2018,39(1):214−220.
    [15]
    陈楠,吴潇霞,白冰瑶,陈计峦. 响应面法优化枣渣总三萜提取工艺及其抗氧化、抗增殖活性[J]. 食品研究与开发,2022,43(10):147−155. doi: 10.12161/j.issn.1005-6521.2022.10.020

    Chen N,Wu XX,Bai BY,Chen JL. Optimization of extraction process of total triterpenoids from jujube residue by response surface methodology and the antioxidant and anti-proliferation activity[J]. Food Research and Development,2022,43(10):147−155. doi: 10.12161/j.issn.1005-6521.2022.10.020
    [16]
    Nyamundanda G,Brennan L,Gormley IC. Probabilistic principal component analysis for metabolomic data[J]. BMC Bioinformatics,2010,11(1):571. doi: 10.1186/1471-2105-11-571
    [17]
    Worley B,Powers R. Multivariate analysis in metabolomics[J]. Curr Metabolomics,2013,1(1):92−107.
    [18]
    Wishart DS,Feunang YD,Marcu A,Guo AC,Liang K,et al. HMDB 4.0:the human metabolome database for 2018[J]. Nucleic Acids Res,2018,46(D1):D608−D617. doi: 10.1093/nar/gkx1089
    [19]
    Kanehisa M,Furumichi M,Sato K,Kawashima M,Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Res,2023,51(D1):D587−D592. doi: 10.1093/nar/gkac963
    [20]
    Świątek A,Lenjou M,van Bockstaele D,Inzé D,van Onckelen HA. Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells[J]. Plant Physiol,2002,128(1):201−211. doi: 10.1104/pp.010592
    [21]
    Munteanu IG,Apetrei C. Analytical methods used in determining antioxidant activity:a review[J]. Int J Mol Sci,2021,22(7):3380. doi: 10.3390/ijms22073380
    [22]
    Tjahjani S,Widowati W,Khiong K,Suhendra A,Tjokropranoto R. Antioxidant properties of Garcinia mangostana L. (mangosteen) rind[J]. Procedia Chemistry,2014(13):198−203.
    [23]
    杨东沛,张媛媛,叶火春,辜柳霜,冯岗,张静. α-倒捻子素对10种植物病原细菌的杀菌活性[J]. 热带农业科学,2023,43(6):45−50.

    Yang DP,Zhang YY,Ye HC,Gu LS,Feng G,Zhang J. Bactericidal activity of α-mangostin against ten kinds of plant pathogenic bacteria[J]. Chinese Journal of Tropical Agriculture,2023,43(6):45−50.
    [24]
    马林伟,徐红涛,戴小丽,韩中保. α-倒捻子素对MCF-7乳腺癌增殖、生长和侵袭的影响及其作用机制[J]. 中国现代医学杂志,2018,28(1):30−36. doi: 10.3969/j.issn.1005-8982.2018.01.007

    Ma LW,Xu HT,Dai XL,Han ZB. Effect of α-mangostin on proliferation,growth and invasion of MCF-7 breast cancer and its mechanism[J]. China Journal of Modern Medicine,2018,28(1):30−36. doi: 10.3969/j.issn.1005-8982.2018.01.007
    [25]
    Huang YQ,Cai SG,Ye LZ,Hu HL,Li CD,et al. The effects of GA and ABA treatments on metabolite profile of germinating barley[J]. Food Chem,2016(192):928−933.
    [26]
    Dong YJ,Wu YX,Zhang ZX,Wang SC,Cheng J,et al. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation[J]. Mol Genet Genomics,2023,298(4):845−855. doi: 10.1007/s00438-023-02019-z
    [27]
    Yao XH,Nie J,Bai RX,Sui XL. Amino acid transporters in plants:identification and function[J]. Plants (Basel),2020,9(8):972. doi: 10.3390/plants9080972
    [28]
    Arruda P,Barreto P. Lysine catabolism through the saccharopine pathway:Enzymes and intermediates involved in plant responses to abiotic and biotic stress[J]. Front Plant Sci,2020,11:587. doi: 10.3389/fpls.2020.00587
    [29]
    Galili G,Amir R,Fernie AR. The regulation of essential amino acid synthesis and accumulation in plants[J]. Annu Rev Plant Biol,2016,67:153−178. doi: 10.1146/annurev-arplant-043015-112213
    [30]
    Yang QQ,Zhao DS,Zhang CQ,Wu HY,Li QF,et al. A connection between lysine and serotonin metabolism in rice endosperm[J]. Plant Physiol,2018,176(3):1965−1980. doi: 10.1104/pp.17.01283
    [31]
    Forde BG,Lea PJ. Glutamate in plants:metabolism,regulation,and signalling[J]. J Exp Bot,2007,58(9):2339−2358. doi: 10.1093/jxb/erm121
    [32]
    Van den Ende W,El-esawe SK. Sucrose signaling pathways leading to fructan and anthocyanin accumulation:a dual function in abiotic and biotic stress responses?[J]. Environ Exp Bot,2014,108:4−13. doi: 10.1016/j.envexpbot.2013.09.017
    [33]
    Emanuelle S,Doblin MS,Stapleton DI,Bacic A,Gooley PR. Molecular insights into the enigmatic metabolic regulator,SnRK1[J]. Trends Plant Sci,2016,21(4):341−353. doi: 10.1016/j.tplants.2015.11.001
    [34]
    Yu SM,Lo SF,Ho THD. Source-sink communication:regulated by hormone,nutrient,and stress cross-signaling[J]. Trends Plant Sci,2015,20(12):844−857. doi: 10.1016/j.tplants.2015.10.009
    [35]
    Wurtzel ET,Kutchan TM. Plant metabolism,the diverse chemistry set of the future[J]. Science,2016,353(6305):1232−1236. doi: 10.1126/science.aad2062
    [36]
    Do THT,Martinoia E,Lee Y,Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters:how they meet the needs of plants[J]. Plant Physiol,2021,187(4):1876−1892. doi: 10.1093/plphys/kiab193
    [37]
    Shitan N,Bazin I,Dan K,Obata K,Kigawa K,et al. Involvement of CjMDR1,a plant multidrug-resistance-type ATP-binding cassette protein,in alkaloid transport in Coptis japonica[J]. Proc Natl Acad Sci USA,2003,100(2):751−756. doi: 10.1073/pnas.0134257100
    [38]
    Goodman CD,Casati P,Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays[J]. Plant Cell,2004,16(7):1812−1826. doi: 10.1105/tpc.022574
    [39]
    Sagharyan M,Sharifi M,Samari E. Methyl jasmonate redirects the dynamics of carbohydrates and amino acids toward the lignans accumulation in Linum album cells[J]. Plant Physiol Biochem,2023,198:107677. doi: 10.1016/j.plaphy.2023.107677
  • Related Articles

    [1]Cai Qianru, Chen Yuanyuan, Yuan Longyi, Fan Xiangrong. Pharmacophylogenetic analysis of Trapa medicinal plants based on secondary metabolites and chloroplast genomes[J]. Plant Science Journal, 2025, 43(3): 283-291. DOI: 10.11913/PSJ.2095-0837.24122
    [2]Li Xiaoxu, Wang Chencan, Ding Wenjing, Mei Man, Zhang Yuqian, Lin Hongxia, Zhao Yuanyuan. Application and prospects of spatial metabolomics technology in plant research[J]. Plant Science Journal, 2024, 42(5): 654-663. DOI: 10.11913/PSJ.2095-0837.23377
    [3]Wang Meng-Di, Yong Xu-Hong, Yin Min, Wang Qi-Zhi. Application of metabonomics in regulation study of plant secondary metabolites[J]. Plant Science Journal, 2023, 41(2): 269-278. DOI: 10.11913/PSJ.2095-0837.22175
    [4]Sheng Sha-Sha, Liu Rong-Peng, Wang Xiao-Yun, Yuan Jun. Physiological and metabolomic analysis of Plantago asiatica L. in response to cadmium stress[J]. Plant Science Journal, 2023, 41(2): 234-244. DOI: 10.11913/PSJ.2095-0837.22130
    [5]Zhen Zhao-Meng, Zhuang Xiao-Cui, Liu Ye, Chen Gui-Lin, Guo Ming-Quan. Antioxidant activities and chemical constituents of roots of Mondia whiteii (Hook. f.) Skeels[J]. Plant Science Journal, 2020, 38(4): 543-550. DOI: 10.11913/PSJ.2095-0837.2020.40543
    [6]Zhao Jia-Li, Zhang Xiao-Na, Huang Juan, Li Hong-You, Shi Tao-xiong, Chen Qing-Fu, Deng Jiao. Metabolite analysis of Fagopyrum tataricum (L.) Gaertner sprouts treated by two kinds of illumination[J]. Plant Science Journal, 2019, 37(6): 808-819. DOI: 10.11913/PSJ.2095-0837.2019.60808
    [7]Liu Ya-Lin, Wu Xiu-Wen, Yan Lei, Du Chen-Qing, Jiang Cun-Cang. Research progress on the effect of boron and calcium on plants and the interaction mechanism in the cell wall[J]. Plant Science Journal, 2018, 36(5): 767-773. DOI: 10.11913/PSJ.2095-0837.2018.50767
    [8]Xu Feng, Wang Tao, Yu Ling, Zhang Li, Zhang Li. Dynamic changes in effective chemical constituents and antioxidant activities in Paeonia lactiflora Pall. during the sun-drying process[J]. Plant Science Journal, 2017, 35(5): 783-789. DOI: 10.11913/PSJ.2095-0837.2017.50783
    [9]HUANG Xiao-Dong, CAI Jian-Xiu, DAI Cong-Jie, ZHANG A-Ting, DONG Wen-Yun. Effect of the Ethyl Acetate Fraction from Ethanol Extract of Aegiceras corniculatum Leaves on Antioxidant and Anti-senescence Ability in Rat Skin[J]. Plant Science Journal, 2015, 33(4): 536-544. DOI: 10.11913/PSJ.2095-0837.2015.40536
    [10]WANG Hui, WANG Qi-Lin, TIAN Jiao, DANG Yue-Fang, LIU Jian-Li, LI Shan, SHANG Jiao, FANG Min-Feng. Antioxidant and Anticancer Activities of Extracts Derived from Four Kinds of Lichen[J]. Plant Science Journal, 2014, 32(2): 181-188. DOI: 10.3724/SP.J.1142.2014.20181

Catalog

    Article views (125) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return