Advance Search
ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320
Citation: ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320

Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms

More Information
  • Received Date: March 16, 2014
  • Revised Date: April 07, 2014
  • Available Online: November 01, 2022
  • Published Date: August 29, 2014
  • Plant leaves reach water balance by evaporative water loss through stomata and water supply from leaf veins. However,it is still unclear whether water supply and transpiration demand maintained balance during the evolution of basal angiosperms. In the present study,we measured stomatal density,stomatal length,vein density and leaf thickness from 11 basal angiosperm species and applied phylogenetically independent contrasts,combined with phylogenetic trees,to detect correlated-evolution between traits. Our results showed that along the evolutionary direction,stomatal density and vein density increased gradually while stomatal length and leaf thickness expressed a declining trend; whether phylogeny was considered or not,stomatal density was positively correlated with vein density,indicating their correlated-evolution,and supporting the hypothesis that leaf water balance existed in basal angiosperms; leaf thickness was correlated significantly with both stomatal traits and vein density; however,after removing the phylogenetic effect,these correlations disappeared,indicating non-correlated evolution between these traits. The results of the present study revealed that the maintenance of the balance between water demand and supply,and even CO2 supply,drove the evolution of leaf structure and function in basal angiosperms.
  • [1]
    Zhang SB, Sun M, Cao KF, Hu H, Zhang JJ. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity[J]. PLoS ONE, 2014, 9:e84682.
    [2]
    Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2):175-183.
    [3]
    Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiol, 2007, 144(4):1890-1898.
    [4]
    Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative[J]. Proc R Soc B, 2009, 276(1663):1771-1776.
    [5]
    李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7):691-698.
    [6]
    Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B. Leaf hydraulic capacity in ferns, conifers and angiosperms:impacts on photosynthetic maxima[J]. New Phytol, 2005, 165(3):839-846.
    [7]
    Brodribb TJ, Jordan GJ, Carpenter RJ. Unified changes in cell size permit coordinated leaf evolution[J]. New Phytol, 2013, 199(2):559-570.
    [8]
    Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytol, 2011, 192(2):437-448.
    [9]
    Franks PJ, Drake PL, Beerling DJ. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density:an analysis using Eucalyptus globulus[J]. Plant Cell Environ, 2009, 32(12):1737-1748.
    [10]
    Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. PLoS ONE, 2012, 7:e40080.
    [11]
    Xu ZZ, Zhou GS. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12):3317-3325.
    [12]
    Drake PL, Froend RH, Franks PJ. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance[J]. J Exp Bot, 2013, 64(2):495-505.
    [13]
    Ogburn RM, Edwards EJ. Quantifying succulence:a rapid, physiologically meaningful metric of plant water storage[J]. Plant Cell Environ, 2012, 35(9):1533-1542.
    [14]
    Scoffoni C, Rawls M, McKown A, Cochard H, Sack L. Decline of leaf hydraulic conductance with dehydration:Relationship to leaf size and venation architecture[J]. Plant Physiol, 2011, 156(2):832-843.
    [15]
    Beerling DJ, Kelly CK. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytol, 1996, 134(1):35-51.
    [16]
    Soltis PS, Soltis DE. The origin and diversification of angiosperms[J]. Amer J Bot, 2004, 91(10):1614-1626.
    [17]
    Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed:a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1):82-107.
    [18]
    Feild TS, Arens NC. The ecophysiology of early angiosperms[J]. Plant Cell Environ, 2007, 30(3):291-309.
    [19]
    Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅲ[J]. Bot J Linn Soc, 2009, 161(2):105-121.
    [20]
    Feild TS, Arens NC. Form, function, and environments of the early angiosperms:merging extant phylogeny and ecophysiology with fossils[J]. New Phytol, 2005, 166(2):383-408.
    [21]
    Abràmoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ[J]. Biophotonics International, 2004, 11:36-42.
    [22]
    Blomberg SP, Garland TJr, Ives AR. Testing for phylogenetic signal in comparative data:beha-vioral traits are more labile[J]. Evolution, 2003, 57(4):717-745.
    [23]
    Kembel SW, Cahill JrJF. Independent evolution of leaf and root traits within and among temperate grassland plant communities[J]. PLoS ONE, 2011, 6:e19992.
    [24]
    Aasamaa K, Sber A, Rahi M. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J]. Aust J Plant Phy-siol, 2001, 28(8):765-774.
    [25]
    Feild TS, Brodribb TJ, Jaffre T, Holbrook NM. Acclimation of leaf anatomy, photosynthetic light use, and xylem hydraulics to light in Amborella trichopoda (Amborellaceae)[J]. Int J Plant Sci, 2001, 162(5):999-1008.
    [26]
    Feild TS, Franks PJ, Sage TL. Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae)[J]. Int J Plant Sci, 2003, 164(2):313-324.
    [27]
    Sack L, Scoffoni C. Leaf venation:structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytol, 2013, 198(4):983-1000.
    [28]
    Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a stronger predictor of cell size and stomatal density in angiosperms[J]. New Phytol, 2008, 179(4):975-986.
    [29]
    Ackerly DD, Donoghue MJ. Leaf size, sapling allometry, and Corner's rules:Phylogeny and correlated evolution in maples (Acer)[J]. Amer Na-turalist, 1998, 152(6):767-791.
    [30]
    Murphy MRC, Jordan GJ, Brodribb TJ. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata[J]. Plant Cell Environ, 2014, 37(1):124-131.
    [31]
    Sack L, Cowan PD, Jaikumar N, Holbrook NM. The‘hydrology'of leaves:co-ordination of stru-cture and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356.
    [32]
    Ackerly DD, Reich PB. Convergence and correlations among leaf size and function in seed plants:a comparative test using independent contrasts[J]. Amer J Bot, 1999, 86(9):1272-1281.
    [33]
    Ackerly D. Self-shading, carbon gain and leaf dynamics:a test of alternative optimality models[J]. Oecologia, 1999, 119(3):300-310.
    [34]
    Woodward FI. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J]. Nature, 1987, 327(6123):617-618.
    [35]
    Schluter U, Muschak M, Berger D, Altmann T. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd 1-1) under different light regimes[J]. J Exp Bot, 2003, 54(383):867-874.
    [36]
    Cunningham SA, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and che-mistry, comparing rainfall and soil nutrient gradients[J]. Ecol Monogr, 1999, 69(4):569-588.
    [37]
    Manetas Y, Petropoulou Y, Stamatakis K, Niko-lopoulos D, Levizou E, Psaras G, Karabourniotis G. Beneficial effects of enhanced UV-B radiation under field conditions:Improvement of needle water relations and survival capacity of Pinus pinea L. seedlings during the dry Mediterranean summer[J]. Plant Ecol, 1997, 128(1-2):101-108.
    [38]
    Kerstiens G. Water transport in plant cuticles:An update[J]. J Exp Bot, 2006, 57(11):2493-2499.
  • Cited by

    Periodical cited type(21)

    1. 施如康, 许贞魏, 贺炯坤, 杨允菲, 韩大勇, 陈晨, 李东育. 基于优化MaxEnt模型的新疆黑蜂生境适宜性评价. 环境昆虫学报. 2025(03)
    2. 吴晓昱. 基于MaxEnt模型预测伯乐树生境适宜性评价. 智慧农业导刊. 2024(07): 21-26 .
    3. 汪建亚,杨春惠,吴昊,汪明. 湖北省林木种质资源保存区划研究. 湖北大学学报(自然科学版). 2024(03): 330-338 .
    4. 杨帆,赵远征,张晓明,王东,周洪友. 基于MaxEnt模型的腐烂茎线虫在内蒙古地区适生区预测. 生物安全学报(中英文). 2024(02): 161-168 .
    5. 黄导,张炎,杨斌,李宗波. 基于最优MaxEnt模型预测小粒绒盾小蠹的潜在适生区. 四川动物. 2024(03): 251-263 .
    6. 云英英,范秋云,史佑海. 基于最大熵模型的海南杜鹃在中国的潜在地理分布. 热带作物学报. 2024(05): 1031-1039 .
    7. 汪庆兵,王金斗,尹积华,熊丽琼,叶蕾,朱悦辰. 伯乐树生物学特性与繁育技术研究进展. 现代农业科技. 2024(11): 117-121 .
    8. 周可柔,陈卓,余著成,钟洋,尚策. 仙霞岭保护区伯乐树种群结构及遗传多样性. 北京林业大学学报. 2024(11): 76-82 .
    9. 谭显胜,段仁燕,邹乐,张涵,胡伟. 全球气候变暖对极小种群植物扣树生境适宜性的影响. 生命科学研究. 2023(01): 56-62 .
    10. 金冬梅,杨灵,许哲平,肖翠,罗茂芳,马克平. 国家标本资源共享平台(NSII)支撑生物多样性科学研究的成效分析. 广西植物. 2023(08): 1501-1515 .
    11. 唐兴港,袁颖丹,张金池. 气候变化对杉木适生区和生态位的影响. 植物研究. 2022(01): 151-160 .
    12. 赖文峰,叶兴状,文国卫,施晨阳,张伟皓,叶利奇,张国防. 基于优化后的MaxEnt模型对珍贵藏药桃儿七潜在适生区分析. 福建农林大学学报(自然科学版). 2022(01): 112-120 .
    13. 欧阳泽怡,欧阳硕龙,吴际友,周志春,李志辉,董帅昌. 最大熵模型在植物适生区预测应用中的研究进展. 湖南林业科技. 2022(01): 83-88 .
    14. 李浩铭,何庆海,余著成,石从广,诸葛菲,王梅芳,李因刚. 不同基质配比对伯乐树幼苗生长与生理特性的影响. 浙江林业科技. 2022(06): 87-93 .
    15. 阙雄剑,谢一青,王益和. 珍稀濒危植物——伯乐树. 福建林业. 2022(06): 17-18 .
    16. 李浩铭,余著成,陈卓,柳新红,李因刚. 光照强度对伯乐树幼苗生长及相关生理指标的影响. 西南林业大学学报(自然科学). 2021(03): 23-30 .
    17. 黄睿智,于涛,赵辉,张声凯,景洋,李俊清. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测. 北京林业大学学报. 2021(05): 33-43 .
    18. 温馨,陈勇,陈江林,邓文平. 赣江源自然保护区伯乐树次生林群落特征及种间关联性. 南方林业科学. 2021(02): 7-11 .
    19. 刘粉粉,徐刚标,李恬甜,罗常莎. 伯乐树转录组SSR分布特征及其引物开发. 植物科学学报. 2021(03): 288-296 . 本站查看
    20. 唐兴港,袁颖丹,张星,张金池. 板栗树种在中国水土流失区的分布及其环境因子. 水土保持通报. 2021(02): 345-352 .
    21. 唐兴港,袁颖丹,张金池. 气候变化对油松潜在地理分布时空格局的影响. 东北林业大学学报. 2021(09): 1-7 .

    Other cited types(7)

Catalog

    Article views (1947) PDF downloads (2985) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return