Citation: | ZHANG Ya, YANG Shi-Jian, SUN Mei, CAO Kun-Fang. Stomatal Traits are Evolutionarily Associated with Vein Density in Basal Angiosperms[J]. Plant Science Journal, 2014, 32(4): 320-328. DOI: 10.3724/SP.J.1142.2014.40320 |
[1] |
Zhang SB, Sun M, Cao KF, Hu H, Zhang JJ. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity[J]. PLoS ONE, 2014, 9:e84682.
|
[2] |
Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2):175-183.
|
[3] |
Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics[J]. Plant Physiol, 2007, 144(4):1890-1898.
|
[4] |
Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. Angiosperm leaf vein evolution was physiologically and environmentally transformative[J]. Proc R Soc B, 2009, 276(1663):1771-1776.
|
[5] |
李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7):691-698.
|
[6] |
Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B. Leaf hydraulic capacity in ferns, conifers and angiosperms:impacts on photosynthetic maxima[J]. New Phytol, 2005, 165(3):839-846.
|
[7] |
Brodribb TJ, Jordan GJ, Carpenter RJ. Unified changes in cell size permit coordinated leaf evolution[J]. New Phytol, 2013, 199(2):559-570.
|
[8] |
Brodribb TJ, Jordan GJ. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees[J]. New Phytol, 2011, 192(2):437-448.
|
[9] |
Franks PJ, Drake PL, Beerling DJ. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density:an analysis using Eucalyptus globulus[J]. Plant Cell Environ, 2009, 32(12):1737-1748.
|
[10] |
Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. PLoS ONE, 2012, 7:e40080.
|
[11] |
Xu ZZ, Zhou GS. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass[J]. J Exp Bot, 2008, 59(12):3317-3325.
|
[12] |
Drake PL, Froend RH, Franks PJ. Smaller, faster stomata:scaling of stomatal size, rate of response, and stomatal conductance[J]. J Exp Bot, 2013, 64(2):495-505.
|
[13] |
Ogburn RM, Edwards EJ. Quantifying succulence:a rapid, physiologically meaningful metric of plant water storage[J]. Plant Cell Environ, 2012, 35(9):1533-1542.
|
[14] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L. Decline of leaf hydraulic conductance with dehydration:Relationship to leaf size and venation architecture[J]. Plant Physiol, 2011, 156(2):832-843.
|
[15] |
Beerling DJ, Kelly CK. Evolutionary comparative analyses of the relationship between leaf structure and function[J]. New Phytol, 1996, 134(1):35-51.
|
[16] |
Soltis PS, Soltis DE. The origin and diversification of angiosperms[J]. Amer J Bot, 2004, 91(10):1614-1626.
|
[17] |
Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. Dark and disturbed:a new image of early angiosperm ecology[J]. Paleobiology, 2004, 30(1):82-107.
|
[18] |
Feild TS, Arens NC. The ecophysiology of early angiosperms[J]. Plant Cell Environ, 2007, 30(3):291-309.
|
[19] |
Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅲ[J]. Bot J Linn Soc, 2009, 161(2):105-121.
|
[20] |
Feild TS, Arens NC. Form, function, and environments of the early angiosperms:merging extant phylogeny and ecophysiology with fossils[J]. New Phytol, 2005, 166(2):383-408.
|
[21] |
Abràmoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ[J]. Biophotonics International, 2004, 11:36-42.
|
[22] |
Blomberg SP, Garland TJr, Ives AR. Testing for phylogenetic signal in comparative data:beha-vioral traits are more labile[J]. Evolution, 2003, 57(4):717-745.
|
[23] |
Kembel SW, Cahill JrJF. Independent evolution of leaf and root traits within and among temperate grassland plant communities[J]. PLoS ONE, 2011, 6:e19992.
|
[24] |
Aasamaa K, Sber A, Rahi M. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees[J]. Aust J Plant Phy-siol, 2001, 28(8):765-774.
|
[25] |
Feild TS, Brodribb TJ, Jaffre T, Holbrook NM. Acclimation of leaf anatomy, photosynthetic light use, and xylem hydraulics to light in Amborella trichopoda (Amborellaceae)[J]. Int J Plant Sci, 2001, 162(5):999-1008.
|
[26] |
Feild TS, Franks PJ, Sage TL. Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae)[J]. Int J Plant Sci, 2003, 164(2):313-324.
|
[27] |
Sack L, Scoffoni C. Leaf venation:structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytol, 2013, 198(4):983-1000.
|
[28] |
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. Genome size is a stronger predictor of cell size and stomatal density in angiosperms[J]. New Phytol, 2008, 179(4):975-986.
|
[29] |
Ackerly DD, Donoghue MJ. Leaf size, sapling allometry, and Corner's rules:Phylogeny and correlated evolution in maples (Acer)[J]. Amer Na-turalist, 1998, 152(6):767-791.
|
[30] |
Murphy MRC, Jordan GJ, Brodribb TJ. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata[J]. Plant Cell Environ, 2014, 37(1):124-131.
|
[31] |
Sack L, Cowan PD, Jaikumar N, Holbrook NM. The‘hydrology'of leaves:co-ordination of stru-cture and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356.
|
[32] |
Ackerly DD, Reich PB. Convergence and correlations among leaf size and function in seed plants:a comparative test using independent contrasts[J]. Amer J Bot, 1999, 86(9):1272-1281.
|
[33] |
Ackerly D. Self-shading, carbon gain and leaf dynamics:a test of alternative optimality models[J]. Oecologia, 1999, 119(3):300-310.
|
[34] |
Woodward FI. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J]. Nature, 1987, 327(6123):617-618.
|
[35] |
Schluter U, Muschak M, Berger D, Altmann T. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd 1-1) under different light regimes[J]. J Exp Bot, 2003, 54(383):867-874.
|
[36] |
Cunningham SA, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and che-mistry, comparing rainfall and soil nutrient gradients[J]. Ecol Monogr, 1999, 69(4):569-588.
|
[37] |
Manetas Y, Petropoulou Y, Stamatakis K, Niko-lopoulos D, Levizou E, Psaras G, Karabourniotis G. Beneficial effects of enhanced UV-B radiation under field conditions:Improvement of needle water relations and survival capacity of Pinus pinea L. seedlings during the dry Mediterranean summer[J]. Plant Ecol, 1997, 128(1-2):101-108.
|
[38] |
Kerstiens G. Water transport in plant cuticles:An update[J]. J Exp Bot, 2006, 57(11):2493-2499.
|
1. |
施如康, 许贞魏, 贺炯坤, 杨允菲, 韩大勇, 陈晨, 李东育. 基于优化MaxEnt模型的新疆黑蜂生境适宜性评价. 环境昆虫学报. 2025(03)
![]() | |
2. |
吴晓昱. 基于MaxEnt模型预测伯乐树生境适宜性评价. 智慧农业导刊. 2024(07): 21-26 .
![]() | |
3. |
汪建亚,杨春惠,吴昊,汪明. 湖北省林木种质资源保存区划研究. 湖北大学学报(自然科学版). 2024(03): 330-338 .
![]() | |
4. |
杨帆,赵远征,张晓明,王东,周洪友. 基于MaxEnt模型的腐烂茎线虫在内蒙古地区适生区预测. 生物安全学报(中英文). 2024(02): 161-168 .
![]() | |
5. |
黄导,张炎,杨斌,李宗波. 基于最优MaxEnt模型预测小粒绒盾小蠹的潜在适生区. 四川动物. 2024(03): 251-263 .
![]() | |
6. |
云英英,范秋云,史佑海. 基于最大熵模型的海南杜鹃在中国的潜在地理分布. 热带作物学报. 2024(05): 1031-1039 .
![]() | |
7. |
汪庆兵,王金斗,尹积华,熊丽琼,叶蕾,朱悦辰. 伯乐树生物学特性与繁育技术研究进展. 现代农业科技. 2024(11): 117-121 .
![]() | |
8. |
周可柔,陈卓,余著成,钟洋,尚策. 仙霞岭保护区伯乐树种群结构及遗传多样性. 北京林业大学学报. 2024(11): 76-82 .
![]() | |
9. |
谭显胜,段仁燕,邹乐,张涵,胡伟. 全球气候变暖对极小种群植物扣树生境适宜性的影响. 生命科学研究. 2023(01): 56-62 .
![]() | |
10. |
金冬梅,杨灵,许哲平,肖翠,罗茂芳,马克平. 国家标本资源共享平台(NSII)支撑生物多样性科学研究的成效分析. 广西植物. 2023(08): 1501-1515 .
![]() | |
11. |
唐兴港,袁颖丹,张金池. 气候变化对杉木适生区和生态位的影响. 植物研究. 2022(01): 151-160 .
![]() | |
12. |
赖文峰,叶兴状,文国卫,施晨阳,张伟皓,叶利奇,张国防. 基于优化后的MaxEnt模型对珍贵藏药桃儿七潜在适生区分析. 福建农林大学学报(自然科学版). 2022(01): 112-120 .
![]() | |
13. |
欧阳泽怡,欧阳硕龙,吴际友,周志春,李志辉,董帅昌. 最大熵模型在植物适生区预测应用中的研究进展. 湖南林业科技. 2022(01): 83-88 .
![]() | |
14. |
李浩铭,何庆海,余著成,石从广,诸葛菲,王梅芳,李因刚. 不同基质配比对伯乐树幼苗生长与生理特性的影响. 浙江林业科技. 2022(06): 87-93 .
![]() | |
15. |
阙雄剑,谢一青,王益和. 珍稀濒危植物——伯乐树. 福建林业. 2022(06): 17-18 .
![]() | |
16. |
李浩铭,余著成,陈卓,柳新红,李因刚. 光照强度对伯乐树幼苗生长及相关生理指标的影响. 西南林业大学学报(自然科学). 2021(03): 23-30 .
![]() | |
17. |
黄睿智,于涛,赵辉,张声凯,景洋,李俊清. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测. 北京林业大学学报. 2021(05): 33-43 .
![]() | |
18. |
温馨,陈勇,陈江林,邓文平. 赣江源自然保护区伯乐树次生林群落特征及种间关联性. 南方林业科学. 2021(02): 7-11 .
![]() | |
19. |
刘粉粉,徐刚标,李恬甜,罗常莎. 伯乐树转录组SSR分布特征及其引物开发. 植物科学学报. 2021(03): 288-296 .
![]() | |
20. |
唐兴港,袁颖丹,张星,张金池. 板栗树种在中国水土流失区的分布及其环境因子. 水土保持通报. 2021(02): 345-352 .
![]() | |
21. |
唐兴港,袁颖丹,张金池. 气候变化对油松潜在地理分布时空格局的影响. 东北林业大学学报. 2021(09): 1-7 .
![]() |