Advance Search
DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362
Citation: DING Ling-Zi, CHEN Ya-Jun, ZHANG Jiao-Lin. Leaf Traits and Their Associations among Liana Species in Tropical Rainforest[J]. Plant Science Journal, 2014, 32(4): 362-370. DOI: 10.3724/SP.J.1142.2014.40362

Leaf Traits and Their Associations among Liana Species in Tropical Rainforest

More Information
  • Received Date: November 06, 2013
  • Revised Date: January 14, 2014
  • Available Online: November 01, 2022
  • Published Date: August 29, 2014
  • Lianas are abundant in tropical rainforest. With global climate change, liana density and biomass are increasing. This can significantly influence co-occurring tree recruitment, growth, mortality and survival, which, in turn, may have a significant effect on the structure, functioning and dynamics of tropical forests. In this study, we measured 17 leaf traits of 20 tropical rainforest liana species from 13 families and analyzed trait associations across lianas. Our results showed that relative water content of liana leaves exhibited the smallest interspecific variation, with a coefficient of variation (CV) of 5%, adaxial epidermis thickness presented the largest interspecific variation (CV of 80%), with the CV of the other 15 traits ranging from 24% to 61%. Across the lianas studied, both vein density and leaf density were positively correlated with stomatal density; and, specific leaf area was negatively correlated with leaf dry matter content. Compared with trees growing in the same habitats, lianas had lower values for leaf area, stomatal density and leaf density, but higher specific leaf area, with no significant differences in leaf anatomical traits between lianas and trees. These results are essential for understanding the ecological adaptation of lianas in tropical rainforest.
  • [1]
    Schnitzer SA, Bongers F. The ecology of lianas and their role in forests[J]. Trends Ecol Evol, 2002, 17(5): 223-230.
    [2]
    Schnitzer SA. A mechanistic explanation for global pattern of liana abundance and distribution[J]. Am Nat, 2005, 166(2): 262-276.
    [3]
    Schnitzer SA, Bongers F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms[J]. Ecol Lett, 2011, 14(4): 397-406.
    [4]
    Putz FE. Liana biomass and leaf area of a tierrafirme forest in the Rio Negro basin, Venezuela[J]. Biotropica, 1983, 15(3): 185-189.
    [5]
    Avalos G, Mulkey SS, Kitajima K. Leaf optical properties of trees and lianas in the outer canopy of a tropical dry forest[J]. Biotropica, 1999, 31(3): 517-520.
    [6]
    孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1): 150-165.
    [7]
    Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson JG. Leaf traits as indicators of resource-use strategy in floras with suc-culent species[J]. New Phytol, 2002, 154(1): 147-157.
    [8]
    刘金环, 曾智慧, Lee DK. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8): 921-925.
    [9]
    Brodribb TJ, Feild TS. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification[J]. Ecol Lett, 2010, 13(2): 175-183.
    [10]
    Sack L, Frole K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees[J]. Ecology, 2006, 87(2): 483-491.
    [11]
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827.
    [12]
    Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. PloS ONE, 2012, 7(6): e40080.
    [13]
    Peter JW, Ken T, John GH. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1): 155-162.
    [14]
    Kitajima K, Poorter L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species[J]. New Phytol, 2010, 186(3): 708-721.
    [15]
    Zhang JL, Poorter L, Cao KF. Productive leaf functional traits of Chinese savanna species[J]. Plant Ecol, 2012, 213(9): 1449-1460.
    [16]
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858.
    [17]
    朱华, 许再富, 王洪, 李保贵. 西双版纳片断热带雨林植物区系成分及变化趋势[J]. 生物多样性, 2000, 8(2): 139-145.
    [18]
    Zhu H, Xu ZF, Wang H, Li BG. Tropical rain fo-rest fragmentation and its ecological and species diversity changes in southern Yunnan[J]. Biodivers Conserv, 2004, 13(7): 1355-1372.
    [19]
    Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG Ⅲ[J]. Bot J Linn Soc, 2009, 161(2): 105-121.
    [20]
    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis[J]. Nat Methods, 2012, 9(7): 671-675.
    [21]
    R Core Team. R: A Language and Environment for Statistical Computing[M]. Vienna, Austria: R Foundation for Statistical Computing, 2013.
    [22]
    朱师丹. 热带雨林木质藤本和树木的叶片性状、水力结构和光合作用的比较[D]. 昆明:中国科学院西双版纳热带植物园, 2010.
    [23]
    Zhang JL, Cao KF. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species[J]. Funct Ecol, 2009, 23(4): 658-667.
    [24]
    Tang Y, Kitching RL, Cao M. Lianas as structural parasites: a re-evaluation[J]. Chin Sci Bull, 2012, 57(4): 307-312.
    [25]
    Salzer J, Matezki S, Kazda M. Nutritional differe-nces and leaf acclimation of climbing plants and the associated vegetation in different types of an Andean montane rainforest[J]. Oecologia, 2006, 147(3): 417-425.
    [26]
    李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698.
  • Related Articles

    [1]Yang Wei, Zhang Mengting, Song Shujie, Wang Liang, Ren Hang, Liu Peipei, Shao Chunxuan, MA Fengwang, Li Mingjun, Ma Baiquan. Effects of spraying foliar magnesium fertilizer on photosynthetic properties and fruit quality of Malus domestica Borkh. cv. ‘Fuji’[J]. Plant Science Journal, 2025, 43(4): 541-549. DOI: 10.11913/PSJ.2095-0837.24239
    [2]Chen Xia, Li Shan, Zhang Zhengke, Meng Lanhuan. Functional analysis of Solanum lycopersicum L. transcription factor SlERF.F4 against gray mold in tomato fruit[J]. Plant Science Journal, 2025, 43(2): 210-220. DOI: 10.11913/PSJ.2095-0837.24079
    [3]Tian Rui, Wang Liang, Yang Wei, Song Shu-Jie, Niu Yu-Hua, Zou Yang-Jun, Ma Feng-Wang, Li Ming-Jun, Ma Bai-Quan. Effects of exogenous application of humic acid liquid film on photosynthetic characteristics and fruit quality of Malus domestica Borkh.[J]. Plant Science Journal, 2023, 41(5): 668-676. DOI: 10.11913/PSJ.2095-0837.22292
    [4]Shen Su-Yun, Wang Zhou-Qian, Zhang Qi, Yang Jie, Han Fei, Zhong Cai-Hong, Wang Chuan-Hua, Huang Wen-Jun. Analysis of fruit quality and sensory evaluation of 36 kiwifruit (Actinidia) germplasm accessions[J]. Plant Science Journal, 2023, 41(4): 540-551. DOI: 10.11913/PSJ.2095-0837.22300
    [5]Huang Wen-Jun, Ran Xin-Yu, Wang Zhou-Qian, Zhong Cai-Hong. Effects of different storage temperature on fruit quality and storability of Actinidia arguta (Sieb. & Zucc.) Planch. ex Miq. 'Mizao 1'[J]. Plant Science Journal, 2022, 40(5): 695-704. DOI: 10.11913/PSJ.2095-0837.2022.50695
    [6]Xiong Hao, Zheng Hao, Han Jia-Xin, Yuan Xin-Yu, Li Ji-Tao, Zhong Cai-Hong, Zhang Qiong. Effects of CPPU treatment on fruit quality in Actinidia[J]. Plant Science Journal, 2022, 40(1): 74-83. DOI: 10.11913/PSJ.2095-0837.2022.10074
    [7]Chen Mei-Yan, Zhao Ting-Ting, Liu Xiao-Li, Han Fei, Zhang Peng, Zhong Cai-Hong. Factor analysis and comprehensive evaluation of fruit quality of ‘Jinyan’ kiwifruit (Actinidia eriantha×Actinidia chinensis)[J]. Plant Science Journal, 2021, 39(1): 85-92. DOI: 10.11913/PSJ.2095-0837.2021.10085
    [8]Zheng Hao, Han Jia-Xin, Han Fei, Zhang Qiong, Zhong Cai-Hong. Effects of organic and ecological green cultivation on Actinidia chinensis Planch. quality[J]. Plant Science Journal, 2019, 37(6): 820-827. DOI: 10.11913/PSJ.2095-0837.2019.60820
    [9]Chen Mei-Yan, Zhang Peng, Zhao Ting-Ting, Han Fei, Liu Xiao-Li, Zhong Cai-Hong. Relationship between harvest indices and fruit quality traits in Actinidia chinensis ‘Jintao’[J]. Plant Science Journal, 2019, 37(5): 621-627. DOI: 10.11913/PSJ.2095-0837.2019.50621
    [10]Huang Wen-Jun, Liu Xiao-Li, Zhang Qi, Chen Mei-Yan, Zhong Cai-Hong. Research on changes in postharvest physiology and fruit quality of Actinidia chinensis ‘Donghong’ under different storage methods[J]. Plant Science Journal, 2019, 37(3): 382-388. DOI: 10.11913/PSJ.2095-0837.2019.30382

Catalog

    Article views (1672) PDF downloads (2493) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return