Advance Search
ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.
Citation: ZHOU Yuan, WANG Bo, GAO Lei, WANG Ting. Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns[J]. Plant Science Journal, 2011, 1(4): 409-416.

Adaptive Evolution and Coevolution of the rbcL Gene in Xeric Pteridaceae Ferns

More Information
  • Received Date: April 01, 2011
  • Revised Date: May 31, 2011
  • Published Date: August 29, 2011
  • Ribulose 1,5-bisphosphate carboxylase /oxygenase(Rubisco,EC 4.1.1.39) is the key photosynthesis enzyme in plants,whose large subunit is encoded by the chloroplast rbcL gene.To better understand the molecular adaption mechanisms of Pteridaceae ferns acclimating to xeric habitats,both adaptive evolutionary and coevolutionary analyses were performed on the rbcL gene sequences of 53 Pteridaceae xeric fern species.The adaptive evolutionary analyses under variable ω ratio sites as well as SLAC,REL and FEL methods indicated that 15 amino acid residues(66S,84E,139L,235G,245I,252A,273Y,295K,296N,299M,307G,330E,349S,365F and 404A) were positively selected.In particular,three sites(245I,252A and 273Y) played an important role in maintaining enzymatic function.The subsequent coevolutionary analysis revealed two groups of coevolutionary residues(139L,273Y and 295K) and(273Y,295K and 349S),which showed that their coevolutionary patterns were significantly related to protein hydrophobicity and molecular weight.This research consolidated that evolutionary models using ω as an indicator of selective pressure provide valuable analysis of the adaption of protein encoding sequences.In addition,this study also demonstrated that Pteridaceae ferns may respond to xeric habitats by adaptively modifying the rbcL gene.
  • Related Articles

    [1]Li Jin-Ye, Ping Jing-Yao, Cui Gui-Feng, Su Ying-Juan, Wang Ting. Effects of the broken rps2 gene cluster on evolutionary rates in Campanulaceae[J]. Plant Science Journal, 2023, 41(3): 333-342. DOI: 10.11913/PSJ.2095-0837.22231
    [2]Wang Jie, Wei Ai-Li, Shi Ying, Li Yan-Hui, Han Yu-Xin, Wang Zhong-Jie. Adaptive evolutionary analysis of hetR gene in Nostoc[J]. Plant Science Journal, 2020, 38(1): 23-31. DOI: 10.11913/PSJ.2095-0837.2020.10023
    [3]Xiong Zhe-Ming, Gao Yi-Bo, Ren Hui-Ying, Xu Bo, Wu Si-Wan, Peng Yuan, Sen Lin. Analysis on the phylogenetic classification and molecular evolution of the matK gene in 40 fern species[J]. Plant Science Journal, 2020, 38(1): 10-22. DOI: 10.11913/PSJ.2095-0837.2020.10010
    [4]Ping Jing-Yao, Zhu Ming, Su Ying-Juan, Wang Ting. Molecular evolution of chloroplast gene rps12 in ferns[J]. Plant Science Journal, 2020, 38(1): 1-9. DOI: 10.11913/PSJ.2095-0837.2020.10001
    [5]Liang Ying-Yi, Pang Xue-Qun, Wang Ting. Mechanism and evolution of fruit type diversity[J]. Plant Science Journal, 2017, 35(6): 912-924. DOI: 10.11913/PSJ.2095-0837.2017.60912
    [6]Wu Xiao-Ping, Sen Lin, Chen Nan, Zhang Xiao, Ma Zhao-Xia, Zhang Qin-Yu. Study on the molecular evolution of the psaA gene from ferns[J]. Plant Science Journal, 2017, 35(2): 177-185. DOI: 10.11913/PSJ.2095-0837.2017.20177
    [7]XU Ke, WANG Bo, SU Ying-Juan, GAO Lei, WANG Ting. Molecular Evolution of psbD Gene in Ferns:Selection Pressure and Co-evolutionary Analysis[J]. Plant Science Journal, 2013, 31(5): 429-438. DOI: 10.3724/SP.J.1142.2013.50429
    [8]Wang Ting, Su Yingjuan, Zhu Jianming. THE APPLICATIONS OF CHLOROPLAST rbcL GENE SEQUENCES TO PLANT SYSTEMATIC STUDIES[J]. Plant Science Journal, 1999, 17(S1): 8-14.
    [9]Wang Chongyun, Dang Chenglin. PLANT MATING SYSTEM AND ITS EVOLUTIONARY MECHANISM IN RELATION TO POPULATION ADAPTATION[J]. Plant Science Journal, 1999, 17(2): 163-172.
    [10]Xu Naiyu. THE TAXONOMY,ORIGIN AND EVOLUTION OF WHEAT[J]. Plant Science Journal, 1988, 6(2): 187-194.

Catalog

    Article views (3029) PDF downloads (2320) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return