Advance Search
Guo Fei-Long, Xu Gang-Biao, Mou Hong-Lin, Li Zan. Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model[J]. Plant Science Journal, 2020, 38(2): 185-194. DOI: 10.11913/PSJ.2095-0837.2020.20185
Citation: Guo Fei-Long, Xu Gang-Biao, Mou Hong-Lin, Li Zan. Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model[J]. Plant Science Journal, 2020, 38(2): 185-194. DOI: 10.11913/PSJ.2095-0837.2020.20185

Simulation of potential spatiotemporal population dynamics of Bretschneidera sinensis Hemsl. based on MaxEnt model

Funds: 

This work was supported by grants from the Biosafety and Genetic Resources Management Project (KJZXSA2019040) and National Key Research and Development Program (2016YFC0503103).

More Information
  • Received Date: July 04, 2019
  • Revised Date: September 09, 2019
  • Available Online: October 31, 2022
  • Published Date: April 27, 2020
  • To model the potential distribution of Bretschneidera sinensis Hemsl. and compare the spatiotemporal population dynamics of B. sinensis under Last Glacial Maximum, Mid Holocene, Current, and Future periods (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5), 151 existing populations of this species and 12 climate variables were selected based on the MaxEnt model and GIS. Using the receiver-operating characteristic curve (ROC), we analyzed the credibility of the MaxEnt model. To identify the climate variables restricting the distribution of this species, we used training gain, percentage contribution, and permutation importance of the climate variables. The spatiotemporal population dynamics of B. sinensis were compared using the distribution area ratio (Na) and extent of habitat change (Ne), respectively. The area under the ROC showed that the AUC values of the training data and test data under the seven different climate scenarios were higher than 0.99. This indicated that the simulation accuracy of the MaxEnt model was extremely high. Training gain, climate variable contribution, and permutation importance revealed that the geographical distribution of B. sinensis was limited by mean diurnal range (mean of monthly), isothermality, and precipitation of the driest quarter. The spatiotemporal population dynamics of B. sinensis from the Last Glacial Maximum to Mid Holocene indicated that the Jinfoshan and Dayaoshan mountains likely provided micro-glacial refugia for this species, after which geographical distribution experienced an expansion. In the future, the potential geographical distribution of B. sinensis may diminish from 25%-46%, depending on changes in greenhouse gas emissions, with the range of B. sinensis being the smallest and most fragmented under RCP 8.5. Implementing international cooperation in the investigation, collection, and genetic management of this species, and establishing ex-situ forest gene conservation in climate friendly areas could be important ways to protect and restore this species.
  • [1]
    Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change[J]. Nature, 2004, 427(6970):145-148.
    [2]
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15(4):365-377.
    [3]
    陈冬梅,康宏樟,刘春江. 中国大陆第四纪冰期潜在植物避难所研究进展[J]. 植物研究, 2011, 31(5):623-632.

    Chen DM, Kang HZ, Liu CJ. An overview on the potential Quaternary glacial refugia of plants in China mainland[J]. Bulletin of Botanical Research, 2011, 31(5):623-632.
    [4]
    Yang XQ, Kushwaha SPS, Saran S, Xu JC, Roy PS. MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51:83-87.
    [5]
    Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology[J]. Ecol Model, 2000, 135:147-186.
    [6]
    朱耿平, 刘国卿, 卜文俊, 高玉葆. 生态位模型的基本原理及其在生物多样性保护中的应用[J]. 生物多样性, 2013, 21(1):90-98.

    Zhu GP, Liu GQ, Pu WJ, Gao YB. Ecological niche mode-ling and its applications in biodiversity conservation[J]. Biodiversity Science, 2013, 21(1):90-98.
    [7]
    Merow C, Smith MJ, Jr JAS. A practical guide to MaxEnt for modeling species distributions:what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10):1058-1069.
    [8]
    Kumar S, Stohlgren TJ. MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. J Ecol Nat Environ, 2009, 1(4):94-98.
    [9]
    Phillips SJ, Dudík M. Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J]. Ecography, 2010, 31(2):161-175.
    [10]
    张琴, 张东方, 吴明丽, 郭杰, 孙成忠, 谢彩香. 基于生态位模型预测天麻全球潜在适生区[J]. 植物生态学报, 2017, 41(7):770-778.

    Zhang Q, Zhang DF, Wu ML, Guo J, Sun CZ, Xie CX. Predicting the global areas for potential distribution of Gastrodia elata based on ecological niche models[J]. Chinese Journal of Plant Ecology, 2017, 41(7):770-778.
    [11]
    Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, et al. Improving transferability of introduced species' distribution models:new tools to forecast the spread of a highly invasive seaweed[J]. PLoS One, 2013, 8(6):e68337.
    [12]
    Chan LM, Brown JL, Yoder AD. Integrating statistical genetic and geospatial methods brings new power to phylogeography[J]. Mol Phylogenet Evol, 2011, 59(2):523-537.
    [13]
    The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants:APG IV[J]. Bot J Linn Soc, 2016, 161(2):105-121.
    [14]
    梁艳, 徐刚标, 张合平, 吴雪琴, 申响保, 王爱云. 南岭山地伯乐树天然种群和人工种群遗传多样性比较[J]. 林业科学, 2012, 48(12):45-52.

    Liang Y, Xu GB, Zhang HP, Wu XQ, Shen XB, Wang AY. Genetic diversity of natural and planted populations of Bretschneidera sinensis from Nanling region[J]. Scientia Silvae Sinicae, 2012, 48(12):45-52.
    [15]
    徐刚标, 梁艳, 蒋燚, 刘雄盛, 胡尚力, 肖玉菲, 郝博搏. 伯乐树种群遗传多样性及遗传结构[J]. 生物多样性, 2013, 21(6):723-731.

    Xu GB, Liang Y, Jiang Y, Liu XS, Hu SL, Xiao YF, Hao BB. Genetic diversity and population structure of Bretschneidera sinensis, an endangered species[J]. Biodiversity Science, 2013, 21(6):723-731.
    [16]
    胡普炜, 段磊, 王美娜, 王铮峰, 陈红锋. 基于AFLP分析的伯乐树(Bretschneidera sinensis)谱系地理学研究[J]. 植物科学学报, 2017, 35(6):815-824.

    Hu PW, Duan L, Wang MN, Wang ZF, Chen HF. Phylogeographic study on Bretschneidera sinensis inferred from AFLP data[J]. Plant Science Journal, 2017, 35(6):815-824.
    [17]
    Wang MN, Duan L, Qiao Q, Wang ZF, Zimmer EA, Li ZC, Chen HF. Phylogeography and conservation genetics of the rare and relict Bretschneidera sinensis (Akania-ceae)[J]. PLoS One, 2018, 13(1):e0189034.
    [18]
    Ronse de Craene LP, Aleck Yang TY, Peter S, Erik FS. Floral anatomy and systematics of Bretschneidera (Bretschneideraceae)[J]. Bot J Linn Soc, 2002,139:29-45.
    [19]
    俞筱押, 田华林, 郭治友. 贵州南部伯乐树群落特征及其种间关系研究[J]. 四川农业大学学报, 2016, 34(1):29-33.

    Yu XY, Tian HL, Guo ZY. Community characteristics and inter specific relationship of Bretschneidera sinensis in southern Guizhou, China[J]. Journal of Sichuan Agricultural University, 2016, 34(1):29-33.
    [20]
    王娟, 刘仁林. 濒危植物伯乐树传粉生物学特性研究[J]. 中国野生植物资源, 2016, 35(3):48-51.

    Wang J, Liu RL. Pollination biology of endangered Bretschneidera sinensis Hemsl[J]. Chinese Wild Plant Resources, 2016, 35(3):48-51.
    [21]
    王娟, 刘仁林, 牛来春. 伯乐树雌雄配子体发育的细胞学观察[J]. 江西农业大学学报, 2016, 38(4):681-686.

    Wang J, Liu RL, Niu LC. Studies on the cytological observation of development of male and female gametophytes in Bretschneidera sinensis[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(4):681-686.
    [22]
    龚维, 夏青, 陈红锋, 俞新华, 伍菲. 珍稀濒危植物伯乐树的潜在适生区预测[J]. 华南农业大学学报, 2015, 36(4):98-104.

    Gong W, Xia Q, Chen HF, Yu XH, Wu F. Prediction of potential distributions of Bretschneidera sinensis, an rare and endangered plant species in China[J]. Journal of South China Agricultural University, 2015, 36(4):98-104.
    [23]
    Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists[J]. Divers Distrib, 2011, 17(1):43-57.
    [24]
    孟艺宏, 徐璕, 姜小龙, 徐刚标. 双花木属植物潜在分布区模拟与分析[J]. 生态学报, 2019, 39(8):2816-2825.

    Meng YH, Xu X, Jiang XL, Xu GB. Potential distribution modeling and analysis of Disanthus Maxim.[J] . Acta Ecologica Sinica, 2019, 39(8):2816-2825.
    [25]
    Jiang XL, Deng M, Li Y. Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas:an insight from Quercus schottkyana (Fagaceae)[J]. Tree Genet Genomes, 2016, 12(6):104.
    [26]
    Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecol Model, 2011, 222(8):1343-1346.
    [27]
    陈新美, 雷渊才, 张雄清, 贾宏炎. 样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J]. 林业科学, 2012, 48(1):53-59.

    Chen XM, Lei YC, Zhang XQ, Jia HY. Effects of sample sizes on accuracy and stability of Maximum Entropy Model in predicting species distribution[J]. Scientia Silvae Sinicae, 2012, 48(1):53-59.
    [28]
    陈晓阳, 沈熙环. 林木育种学[M]. 北京:高等教育出版社, 2005.
    [29]
    Jackson ST, Overpeck JT. Responses of plant populations and communities to environmental changes of the Late Quaternary[J]. Paleobiology, 2009, 26(4):194-220.
    [30]
    Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC. Buffered tree population changes in a Quaternary refugium:evolutionary implications[J]. Science, 2002, 297:2044-2047.
    [31]
    中国第四纪孢粉数据库小组. 中国中全新世(6 ka BP)和末次盛冰期(18 ka BP)生物群区的重建[J]. 植物学报, 2010, 42(11):1201-1209.

    Members of China Quaternary Pollen Data Base. Pollen-based biome reconstruction at Middle Holocene(6 ka BP) and Last Glacial Maximum (18 ka BP) in China[J]. Journal of Integrative Plant Biology, 2010, 42(11):1201-1209.
    [32]
    Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. Beyond predictions:biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025):53-58.
    [33]
    Qian H, Ricklefs RE. Palaeovegetation (communications arising):diversity of temperate plants in East Asia[J]. Nature, 2001, 413(6852):100-106.
    [34]
    Austin MP, Niel KPV. Improving species distribution models for climate change studies:variable selection and scale[J]. J Biogeogr, 2011, 38(1):1-8.
  • Related Articles

    [1]Zeng Weiying, Wang Dezhi, Ye Chen, Gong Yu, Wang Yuxi, Zhang Quanfa. Prediction of potential distribution of Cupressus gigantea W. C. Cheng & L. K. Fu in China based on optimized MaxEnt modeling[J]. Plant Science Journal, 2025, 43(1): 52-62. DOI: 10.11913/PSJ.2095-0837.24033
    [2]Cao Qian, Gao Qing-Bo, Guo Wan-Jun, Zhang Yu, Wang Zhi-Hua, Ma Xiao-Lei, Zhang Fa-Qi, Chen Shi-Long. Impacts of human activities and environmental factors on potential distribution of Swertia przewalskii Pissjauk., an endemic plant in Qing-Tibetan Plateau, using MaxEnt[J]. Plant Science Journal, 2021, 39(1): 22-31. DOI: 10.11913/PSJ.2095-0837.2021.10022
    [3]Li Dan-Qi, Hu Wan, Han Cai-Xia, Chen Lu-Dan, Zhang Zhi-Yong, Zhong Ai-Wen, Wei Zong-Xian, Peng Yan-Song. Prediction of potential suitable distribution of Fokienia hodginsii (Dunn) Henry et Thomas based on MaxEnt model[J]. Plant Science Journal, 2020, 38(6): 743-750. DOI: 10.11913/PSJ.2095-0837.2020.60743
    [4]Zhou Ya-Dong, Mwangi Brian Njoroge, Ndungu John Mbari, Wang Sheng-Wei, Hu Guang-Wan, Wang Qing-Feng. Simulating potential distribution of Afrocanthium (Rubiaceae) in Kenya based on MaxEnt and its application in the Flora of Kenya[J]. Plant Science Journal, 2020, 38(5): 636-643. DOI: 10.11913/PSJ.2095-0837.2020.50636
    [5]Yang Teng, Wang Shi-Tong, Wei Xin-Zeng, Jiang Ming-Xi. Modeling potential distribution of an endangered genus (Sinojackia) endemic to China[J]. Plant Science Journal, 2020, 38(5): 627-635. DOI: 10.11913/PSJ.2095-0837.2020.50627
    [6]Shuayib Yusup, Mamtimin Sulayman, Winira Ilghar, Zhang Zhong-Xin. Prediction of potential distribution of Didymodon (Bryophyta, Pottiaceae) in Xinjiang based on the MaxEnt model[J]. Plant Science Journal, 2018, 36(4): 541-553. DOI: 10.11913/PSJ.2095-0837.2018.40541
    [7]Liu Xiang, Gong Xi, Chen Si-Si, Guan Bi-Cai. Simulation of the distribution pattern of Sassafras tzumu and changes in habitat based on ArcGIS and MaxEnt[J]. Plant Science Journal, 2018, 36(3): 320-326. DOI: 10.11913/PSJ.2095-0837.2018.30320
    [8]WEN Jian, SONG Jing-Yuan, XIE Cai-Xiang, ZHANG Qin, ZENG Fan-Lin, ZHANG Yi. Identification of Potential Distribution Areas for Energy Plant Jatropha curcas L. Using the Maxent Entropy Model[J]. Plant Science Journal, 2016, 34(6): 849-856. DOI: 10.11913/PSJ.2095-0837.2016.60849
    [9]JIANG Yan-Bin, ZHANG Yang-Jian. Distribution of Plant Functional Groups in the Natural Grasslands of Xizang, China[J]. Plant Science Journal, 2016, 34(2): 220-229. DOI: 10.11913/PSJ.2095-0837.2016.20220
    [10]YU Jing, TANG Yan-Xue, GUO Shui-Liang. Comparison of the Geographical Distribution of Racomitrium and Grimmia in China Using ArcGis and MaxEnt Software[J]. Plant Science Journal, 2012, 30(5): 443-458. DOI: 10.3724/SP.J.1142.2012.50443

Catalog

    Article views (947) PDF downloads (618) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return