Advance Search
DENG Ying, GAO Le-Xuan, ZHU Zhu, YANG Ji. Differential Expression of DNA Methylation Regulating Factors and Dynamic Methylation Patterns of Alternanthera philoxeroides under Different Water Treatments[J]. Plant Science Journal, 2014, 32(5): 475-486. DOI: 10.11913/PSJ.2095-0837.2014.50475
Citation: DENG Ying, GAO Le-Xuan, ZHU Zhu, YANG Ji. Differential Expression of DNA Methylation Regulating Factors and Dynamic Methylation Patterns of Alternanthera philoxeroides under Different Water Treatments[J]. Plant Science Journal, 2014, 32(5): 475-486. DOI: 10.11913/PSJ.2095-0837.2014.50475

Differential Expression of DNA Methylation Regulating Factors and Dynamic Methylation Patterns of Alternanthera philoxeroides under Different Water Treatments

More Information
  • Received Date: April 07, 2014
  • Revised Date: May 13, 2014
  • Available Online: November 01, 2022
  • Published Date: October 29, 2014
  • DNA methylation functions as an important epigenetic mechanism involved in various biological processes. Different enzymes participate in the dynamic regulation of DNA methylation status. Changes in DNA methylation can be induced by environmental factors and can result in phenotypic variations by altering gene expression and eventually ontogenetic trajectory. Alternanthera philoxeroides is an invasive species that grows in a variety of habitats, showing high phenotypic plasticity. To investigate the effects of epigenetic modulation on phenotypically variation of A.philoxeroides, the gene expression patterns of 16 DNA methylation regulating factors were measured at different time points of water treatment using quantitative RT-PCR. Thirteen genes responsible for DNA and histone methylation were differentially expressed under different water treatments, with most up-regulated in the early stages of water treatment. Bisulfite sequencing was employed to detect the methylation status of CpG islands within the promoter regions of two genes, Contig942 and Contig23336, which were differentially expressed in response to different water treatments. Some cytosines, especially at asymmetric CHH sites, experienced fast and reversible changes in methylation status during water treatment. These changes in promoter methylation were probably responsible for the altered expression of these genes in different environments.
  • [1]
    Geng YP,Pan XY,Xu CY, Zhang WJ,Li B,Chen JK,Lu BR,Song ZP.Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats[J].Biol Invasions,2007,9(3):245-256.
    [2]
    Bradshaw AD.Evolutionary significance of phenotypic plasticity in plants[J].Advan Genet,1965,13:115-155.
    [3]
    Jaenisch R,Bird A.Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J].Nat Genet, 2003,33:245-254.
    [4]
    Bossdorf O,Richards CL,Pigliucci M.Epigene-tics for ecologists[J].Ecol Lett,2008,11(2):106-115.
    [5]
    Chinnusamy V,Zhu JK.Epigenetic regulation of stress responses in plants[J].Curr Opin Plant Biol,2009,12(2):133-139.
    [6]
    Sultan SE.An emerging focus on plant ecological development[J].New Phytol,2005,166(1):1-5.
    [7]
    Schlichting CD,Smith H.Phenotypic plasticity:linking molecular mechanisms with evolutionary outcomes[J].Evol Ecol,2002,16(3):189-211.
    [8]
    Richards EJ.Inherited epigenetic variation — revisiting soft inheritance[J].Nat Rev Genet,2006,7(5):395-401.
    [9]
    Pigliucci M,Murren CJ,Schlichting CD.Phenotypic plasticity and evolution by genetic assimilation[J]. J Exp Biol,2006,209(12):2362-2367.
    [10]
    Grant-Downton RT,Dickinson HG.Epigenetics and its implications for plant biology.1.The epigenetic network in plants[J].Ann Bot,2005,96(7):1143-1164.
    [11]
    Hinshelwood RA,Melki JR,Huschtscha LI, Paul C,Song JZ,Stirzaker C,Reddel RR,Clark SJ.Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning[J].Hum Mol Genet,2009,18(16):3098-3109.
    [12]
    Deaton AM,Bird A.CpG islands and the regulation of transcription[J].Genes Dev,2011,25(10):1010-1022.
    [13]
    He XJ,Chen T,Zhu JK.Regulation and function of DNA methylation in plants and animals[J].Cell Res,2011,21(3):442-465.
    [14]
    Chan SW,Henderson IR,Jacobsen SE.Gardening the genome:DNA methylation in Arabidopsis thaliana[J].Nat Rev Genet,2005,6(5):351-360.
    [15]
    Finnegan EJ,Kovac KA.Plant DNA methyltransferases[J].Plant Mol Biol,2000,43(2-3):189-201.
    [16]
    Xia H,Liu MQ,Yin WL, Lu CF,Xia XL.DNA methylation regulating factors in plants[J].Yi Chuan,2008,30(4):426-432.
    [17]
    Vanyushin BF,Ashapkin VV.DNA methylation in higher plants:past,present and future[J].Biochim Biophys Acta,2011,1809(8):360-368.
    [18]
    Gong Z,Morales-Ruiz T,Ariza RR, Roldán-Arjona T,David L,Zhu JK.ROS1,a repressor of transcriptional gene silencing in Arabidopsis,encodes a DNA glycosylase/lyase[J]. Cell,2002,111(6):803-814.
    [19]
    Zheng X,Pontes O,Zhu J,Miki D,Zhang F,Li WX,Iida K,Kapoor A,Pikaard CS,Zhu JK.ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis[J].Nature,2008,455(7217):1259-1262.
    [20]
    Finnegan EJ,Peacock WJ,Dennis ES.DNA methylation,a key regulator of plant development and other processes[J].Curr Opin Genet Dev,2000,10(2):217-223.
    [21]
    Jeddeloh JA,Stokes TL,Richards EJ.Maintenance of genomic methylation requires a SWI2/SNF2-like protein[J].Nat Genet,1999,22(1):94-97.
    [22]
    Bischoff V,Selbig J,Scheible WR.Involvement of TBL/DUF231 proteins into cell wall biology[J].Plant Signal Behav,2010,5(8):1057-1059.
    [23]
    Bischoff V,Nita S,Neumetzler L, Schindelasch D,Urbain A,Eshed R,Persson S,Delmer D,Scheible WR.TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis[J].Plant Physiol,2010,153(2):590-602.
    [24]
    Lefebvre V,Fortabat MN,Ducamp A, North HM,Maia-Grondard A,Trouverie J,Boursiac Y,Mouille G,Durand-Tardif M.ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport[J].PLoS One,2011,6(2):e16645.
    [25]
    Mizoi J,Shinozaki K,Yamaguchi-Shinozaki K.AP2/ERF family transcription factors in plant abio-tic stress responses[J].Biochim Biophys Acta,2012,1819(2):86-96.
    [26]
    Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method[J].Methods,2001,25(4):402-408.
    [27]
    Schmittgen TD,Livak KJ.Analyzing real-time PCR data by the comparative C (T) method[J].Nat Protoc,2008,3(6):1101-1108.
    [28]
    Zheng C,Zhang LP,Tang ZH,Zhao CP,Yuan SH.TAIL-PCR and its cloning in plant gene[J].Genom Appl Biol,2009,28:544-548.
    [29]
    Liu YG,Whittier RF.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J].Genomics,1995,25(3):674-681.
    [30]
    Li LC,Dahiya R.MethPrimer:designing primers for methylation PCRs[J].Bioinformatics,2002,18(11):1427-1431.
    [31]
    Foerster AM,Mittelsten SO.Analysis of DNA methylation in plants by bisulfite sequencing[J].Methods Mol Biol,2010,631:1-11.
    [32]
    Henderson IR,Chan SR,Cao X, Johnson L,Jacobsen SE.Accurate sodium bisulfite sequencing in plants[J].Epigenetics,2010,5(1):47-49.
    [33]
    Warnecke PM,Stirzaker C,Song J,Grunau C,Melki JR,Clark SJ.Identification and resolution of artifacts in bisulfite sequencing[J].Methods,2002,27(2):101-107.
    [34]
    Gruntman E,Qi Y,Slotkin RK,Roeder T,Martienssen RA,Sachidanandam R.Kismeth:analyzer of plant methylation states through bisulfite sequencing[J].BMC Bioinformatics,2008,9:371.
    [35]
    Foerster AM,Hetzl J,Mullner C, Mittelsten SO.Analysis of bisulfite sequencing data from plant DNA using CyMATE[J].Methods Mol Biol,2010,631:13-22.
    [36]
    Zhong R,Ye ZH.MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes[J].Plant Cell Physiol,2012,53(2):368-380.
    [37]
    Zhong R,Lee C,Ye ZH.Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis[J].Mol Plant,2010,3(6):1087-1103.
  • Related Articles

    [1]WANG Hai-ling, XIANG Wei, ZHU Shi-dan, ZHAO Hao-yang, DUAN Wei-xing, ZHU Jun-jie. Correlation between leaf structural traits and cold resistance in Saccharum officinarum L.[J]. Plant Science Journal, 2021, 39(6): 672-680. DOI: 10.11913/PSJ.2095-0837.2021.60672
    [2]CHEN Yun, ZHEN Yong, LIU Xia, REN Yu, MA Liu-Feng. Overexpression of the Cotton CBF2 Gene Enhances Salt and Drought Tolerance in Arabidopsis thaliana[J]. Plant Science Journal, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888
    [3]YUAN Jin-Feng, NIU Ya-Jie, CHEN Hong-Xian, DONG Qian-Qian, FAN Ya-Li, LIU Zhong-Hua. Comprehensive Evaluation on Cold Resistance of Nine Kinds of Deciduous and Semi-evergreen Dwarf Shrubs from the Freeze to Melt Period in Spring[J]. Plant Science Journal, 2014, 32(6): 630-637. DOI: 10.11913/PSJ.2095-0837.2014.60630
    [4]ZHANG Bi-Yu, LI Ling, ZHENG Si-Chun, FENG Qi-Li. The Cold-resistance and Ultra Structure of Leaf Cells in CfGST Transgenic Arabidopsis thaliana[J]. Plant Science Journal, 2009, 27(3): 246-249.
    [5]HU Ying, WANG Yi-Zhong. Mapping of QTL Controlling Seedling Cold Tolerance Using Recombinant Inbred Lines of Rice (Oryza sativa L.)[J]. Plant Science Journal, 2005, 23(3): 211-215.
    [6]LIN Gang, HE Guang-Yuan. Field Trial and Agronomic Performance of Transgenic Wheat in Hubei[J]. Plant Science Journal, 2004, 22(4): 284-288.
    [7]QU Ting-Ting, CHEN Li-Yan, ZHANG Zhi-Hong, HU Zhong-Li, LI Ping, ZHU Li-Huang, ZHU Ying-Guo. Molecular Mapping of Genes Conferring Cold Tolerance at Seedling Stage Using Doubled Haploid Lines from An indica-japonica Cross in Rice[J]. Plant Science Journal, 2003, 21(5): 385-389.
    [8]Din Xiaoyu, Shi Guoxin, Chen Weipei, Xiu Xiangshen. MORPHOLOGICAL STUDIES ON THE DEVELOPMENT AND COLD RESISTANCE OF THE WINTER BUDS OF ZIZANIA CADUCIFLORA HAND.-MAZZ.[J]. Plant Science Journal, 1993, 11(2): 104-110.
    [9]Sun Zhonghai, Zhang Wencai, Qu Shengxiang, Ma Xiangtao. STUDIES ON THE FATTY ACIDS COMPOSITION OF THE CITRUS CELL MEMBRANE AND ITS RELATIONSHIP WITH THE COLD RESISTANCE[J]. Plant Science Journal, 1990, 8(1): 79-86.
    [10]Xie Tingwei, Ouyang Meishang. ANATOMY OF THE LEAVES AND FREEZING HARDINESS OF THIRTEEN SPECIES OF MAGNOLIACEAE[J]. Plant Science Journal, 1989, 7(3): 234-238.
  • Cited by

    Periodical cited type(4)

    1. 杨正鑫,于潘,王全喜,尤庆敏. 中国硅藻新记录种——帕拉特利氏藻. 西北植物学报. 2024(05): 832-835 .
    2. 刘琪,李佳佳,冯佳,吕俊平,南芳茹,刘旭东,谢树莲. 蟒河国家自然保护区硅藻植物新记录. 山西大学学报(自然科学版). 2021(01): 194-198 .
    3. 刘腾腾,罗粉,王艳璐,王全喜,尤庆敏. 上海淀山湖2种硅藻植物中国新记录. 西北植物学报. 2020(01): 170-173 .
    4. 任军,曾琛,雷洲,郑延丽. 茂兰自然保护区4种纵裂菌科真菌形态学特征及分子系统学研究. 贵州师范学院学报. 2019(06): 26-31 .

    Other cited types(1)

Catalog

    Article views (1441) PDF downloads (1770) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return