Advance Search
WANG Jing, CHEN Fang, LIU Yi. Respiration Characteristics of Different Sized Soil Aggregates and Their Contribution to Carbon Emissions[J]. Plant Science Journal, 2014, 32(6): 586-593. DOI: 10.11913/PSJ.2095-0837.2014.60586
Citation: WANG Jing, CHEN Fang, LIU Yi. Respiration Characteristics of Different Sized Soil Aggregates and Their Contribution to Carbon Emissions[J]. Plant Science Journal, 2014, 32(6): 586-593. DOI: 10.11913/PSJ.2095-0837.2014.60586

Respiration Characteristics of Different Sized Soil Aggregates and Their Contribution to Carbon Emissions

More Information
  • Received Date: April 22, 2014
  • Available Online: October 31, 2022
  • Published Date: December 29, 2014
  • The respiration characteristics of different sized yellow brown soil aggregates and their contribution to carbon emissions were assessed by soil pot experiment. Results showed that the respiration rates of aggregates and homogenized soil were highest at the beginning of the incubation, and then showed a descending tendency during the period of incubation. During the incubation time, the homogenized soil had the highest respiration rate. The respiration rates varied with aggregate size: (>5 mm)>(<1 mm)≈(1~5 mm). This indicated that the largest macroaggregates (>5 mm) had the highest contribution to carbon emissions. Correlation analysis showed that the respiration rates of different sized soil aggregates were significantly and exponentially correlated with soil temperature. The Q10 values ranged from 2.53 to 5.11 and had the same variation tendency in different aggregates with soil organic carbon (SOC) and total nitrogen (TN). The <1 mm aggregates had the highest Q10 value and SOC and TN contents, while>5mm and 1~5 mm aggregates had lower Q10 values and SOC and TN contents. Our results suggested that both the contents of SOC and TN and the soil structure affected temperature sensitivity of soil respiration.
  • [1]
    Schimel DS. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biol, 1995, 1(1): 77-91.
    [2]
    Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627.
    [3]
    Singh JS, Gupta SR. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Bot Rev, 1977, 43(4): 449-528.
    [4]
    Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7-20.
    [5]
    韩广轩, 周广胜. 土壤呼吸作用时空动态变化及其影响机制研究与展望[J]. 植物生态学报, 2009, 33(1): 197-205.
    [6]
    Wiant HV. Influence of temperature on the rate of soil respiration[J]. J Forest, 1967, 65(7): 489-490.
    [7]
    Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biol Biochem, 2000, 32(14): 2099-2103.
    [8]
    Chenu C, Bissonnais LY, Arrouays D. Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Sci Soc Am J, 2000, 64(4): 1479-1486.
    [9]
    Semenov VM, Lvannikova LA, Semenova NA, Khodzhaeva AK, Udal’tsov SN. Organic matter mineralization in different soil aggregate fractions[J]. Eurasian Soil Sci, 2010, 43(2): 141-148.
    [10]
    Six J, Paustian K, Elliott ET, Combrik C. Soil structure and organic matter:Ⅰ. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Sci Soc Am J, 2000, 64(2): 681-689.
    [11]
    Grandy AS, Robertson GP. Aggregation and organic matter protection following tillage of a previously uncultivated soil[J]. Soil Sci Soc Am J, 2006, 70(4): 1398-1406.
    [12]
    Wu HH, Wiesmeier M, Yu Q, Steffens M, Han XG, Kögel-Knabner I. Labile organic C and N mine-ralization of soil aggregate size classes in semiarid grasslands as affected by grazing management[J]. Biol Fert Soils, 2012, 48(3): 305-313.
    [13]
    Luo YQ, Wan SQ, Hui DF, Wallace LL. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622-625.
    [14]
    Lloyd J, Taylor JA. On the temperature depen-dence of soil respiration[J]. Funct Ecol, 1994, 8(3): 315-323.
    [15]
    刘中良, 宇万太. 土壤团聚体中有机碳研究进展[J]. 中国生态农业学报, 2011, 19(2): 447-455.
    [16]
    窦森, 李凯, 关松. 土壤团聚体中有机碳研究进展[J]. 土壤学报, 2011, 48(2): 412-418.
    [17]
    李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4):544-552.
    [18]
    刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响[J]. 生态学报, 1997, 17(5): 469-476.
    [19]
    唐英平. 土壤呼吸温度敏感性及土壤有机碳分解速率的研究[D]. 福州:福建师范大学, 2008:19.
    [20]
    Fang C, Moncrieff JB. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33(2): 155-165.
    [21]
    Winkler JP, Cherry RS, Schlesinger WH. The Q10 relationship of microbial respiration in a temperate forest soil[J]. Soil Biol Biochem, 1996, 28(8): 1067-1072.
    [22]
    文倩, 赵小蓉, 陈焕伟, 妥德宝, 林启美. 半干旱地区不同土壤团聚体中微生物量碳的分布特征[J]. 中国农业科学, 2004, 37(10): 1504-1509.
    [23]
    Gupta VVSR, Germida JJ. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J]. Soil Biol Biochem, 1988, 20(6): 777-786.
    [24]
    张平究, 李恋卿, 潘根兴, 张俊伟. 长期不同施肥下太湖地区黄泥土表土微生物碳、氮量及基因多样性变化[J]. 生态学报, 2004, 24(12): 2818-2824.
    [25]
    Goebel MO, Bachmann J, Woche SK, Fischer WR. Soil wettability, aggregate stability, and the decomposition of soil organic matter[J]. Geoderma, 2005, 128(1): 80-93.
    [26]
    Six J, Elliott ET, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Sci Soc Am J, 1999, 63(5): 1350-1358.
    [27]
    李玲, 仇少君, 刘京涛, 刘庆, 陆兆华. 土壤溶解性有机碳在陆地生态系统碳循环中的作用[J]. 应用生态学报, 2012, 23(5): 1407-1414.
    [28]
    Fernández R, Quiroga A, Zorati C, Noellemeyer E. Carbon contents and respiration rates of aggregate size fractions under no-till and conventional tillage[J]. Soil Till Res, 2010, 109(2): 103-109.
    [29]
    王君, 宋新山, 严登华, 陈燕. 多重干湿交替格局下土壤Birch效应的响应机制[J]. 中国农学通报, 2013, 29(27): 120-125.
    [30]
    Fang C, Moncrieff JB. A model for soil CO2 production and transport 1: Model development[J]. Agr Forest Meteorol, 1999, 95(4): 225-236.
    [31]
    Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81-99.
    [32]
    张金波, 宋长春, 杨文燕. 不同土地利用下土壤呼吸温度敏感性差异及影响因素分析[J]. 环境科学学报, 2005, 25(11): 1537-1542.
  • Related Articles

    [1]Ai Ying, Liu Haikun, Yu Linhong, Hu Man, Dang Haishan. Study on non-structural carbohydrate allocation strategies of psammophytes induced by drought stress in southeastern Xizang[J]. Plant Science Journal, 2024, 42(5): 602-611. DOI: 10.11913/PSJ.2095-0837.23371
    [2]Xin Yaxuan, Tan Yunhong, Xin Peiyao, Li Haitao, Zhang Shuhong, Tang Junrong, Yu Wenbin. Taxonomical clarification of Dracaena cambodiana Pierre ex Gagnep., the source plant of Chinese “Resina Draconis”[J]. Plant Science Journal, 2024, 42(5): 572-581. DOI: 10.11913/PSJ.2095-0837.23340
    [3]Xin Jia, Sun Heng, Liu Juan, Yang Dong, Deng Xian-Bao, Yang Mei. Advances in the identification, function, and application of flavonoids in Nelumbo[J]. Plant Science Journal, 2023, 41(3): 400-410. DOI: 10.11913/PSJ.2095-0837.22194
    [4]Xiong Zhe-Ming, Yu Ming-Zhu, Yang Xing-Xing, Hu Chao-Yi, Xu Bo, Hu Zhi-Gang, Zhang Chong, Sen Lin, Peng Yuan. Study on full-length coding sequence of matK gene and its coding protein from medicinal Botrychium[J]. Plant Science Journal, 2020, 38(2): 233-240. DOI: 10.11913/PSJ.2095-0837.2020.20233
    [5]Zhang Tian-Yuan, Wang Bai-Shi, Song Chi, Zhang Yan-Jun, Xu Xiao-Yu, Yang Xue-Ying, Zhang Jin, Zhang Ying, Liu Kai-Hui, Peng Xiao-Tian, Pei Li. Identification of Vitis species based on nuclear gene molecular polymorphism[J]. Plant Science Journal, 2018, 36(4): 569-574. DOI: 10.11913/PSJ.2095-0837.2018.40569
    [6]WANG Qiu-Li, YANG Yun-Qiang, YANG Yong-Ping. Molecular Cloning, Sequence Analyses, and Functional Identification the of WRKY53 Gene in Stipa purpurea[J]. Plant Science Journal, 2016, 34(6): 879-887. DOI: 10.11913/PSJ.2095-0837.2016.60879
    [7]QIAO Hai-Yun, LI Fei, ZHANG Shu-Jiang, ZHANG Shi-Fan, ZHANG Hui, SUN Ri-Fei. Production and Identification of Interspecific Hybrids between Chinese Cabbage and Purple Cabbage[J]. Plant Science Journal, 2012, 30(4): 407-414. DOI: 10.3724/SP.J.1142.2012.40407
    [8]ZHONG Cai-Hong, ZHANG Peng, JIANG Zheng-Wang, WANG Sheng-Mei, HAN Fei, XU Li-Yun, HUANG Hong-Wen. Dynamic Changes of Carbohydrate and Vitamin C in Fruits of Actinidia chinensis and A.eriantha during Growing Season[J]. Plant Science Journal, 2011, 29(3): 370-376.
    [9]LUO Yu, WU Yao-Sheng, ZHOU Juan, LI Ke-Zhi, XU Peng. RAPD Analysis with Random Primer Combinations and SCAR Identification of Gynostemma pentaphyllum[J]. Plant Science Journal, 2011, 29(2): 243-247.
    [10]QIU Qing-Chuan, YANG Dai-Chang. Molecular Pharming in Plants:An Overview and Update[J]. Plant Science Journal, 2009, 27(1): 83-89.

Catalog

    Article views (1196) PDF downloads (1753) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return