Advance Search
GUO Xin-Xin, ZHU Yu-Ying, HOU Rui-Xian, LI Xiao-Feng, ZHU Hong-Fang, HOU Xi-Lin. Effects of Waterlogging Stress on Photosynthetic Characteristics of Pak-Choi[J]. Plant Science Journal, 2015, 33(2): 210-217. DOI: 10.11913/PSJ.2095-0837.2015.20210
Citation: GUO Xin-Xin, ZHU Yu-Ying, HOU Rui-Xian, LI Xiao-Feng, ZHU Hong-Fang, HOU Xi-Lin. Effects of Waterlogging Stress on Photosynthetic Characteristics of Pak-Choi[J]. Plant Science Journal, 2015, 33(2): 210-217. DOI: 10.11913/PSJ.2095-0837.2015.20210

Effects of Waterlogging Stress on Photosynthetic Characteristics of Pak-Choi

More Information
  • Received Date: August 26, 2014
  • Available Online: October 31, 2022
  • Published Date: April 27, 2015
  • Using Pak-Choi (Brassica campestris ssp. chinensis Makino) variety ‘Xinaiqing’ as the tested material, we investigated the effects of waterlogging with different stress depth on its photosynthetic characteristics, chlorophyll content and chlorophyll fluorescence. Results showed that: under 5 d waterlogging, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), photosystemⅡ (Fv/Fm) of the surface submergence of soil and the semi-submergence of plants were significantly lower, accounting for 43.1% and 22.1%, 26.4% and 14.3%, 40.2% and 33.2%, and 87.9% and 77.1% of the control, respectively. Chlorophyll content, effective photochemical quantum yield (Yield) and electron transport rate (ETR) were also significantly decreased. Water use efficiency (WUE) and coefficient of photochemical quenching (qP) during root submergence were slightly lower, but significantly decreased during the semi-submergence of plants. However, intercellular carbon dioxide concentration (Ci) and non-photochemical quenching coefficient (qN) of the surface submergence of soil and the semi-submergence of plants were significantly increased, accounting for 105.3% and 115.6%, and 120.6% and 147.4% of the control, respectively. The above results indicated that there were significant effects on photosynthetic characteristics under waterlogging stress, and these parameters showed greater change under submergence waterlogging stress than that under root waterlogging stress.
  • [1]
    刘春风.淹水对15个树种苗木生长和形态特征的影响[D].南京:南京林业大学,2009.
    [2]
    姜玉萍,丁小涛,张兆辉,李鹏波.淹水胁迫对茄子生长和光合作用的影响[J].中国瓜菜,2012,25(5):20-23.
    [3]
    姜玉萍,郝婷,张兆辉,陈春宏,杨晓锋.淹水对不同蔬菜生长和光合作用的影响[J]. 上海农业学报,2013,29(5):97-100.
    [4]
    梁哲军,陶宏斌,王璞.淹水解除后玉米幼苗形态及光合生理特征恢复[J].生态学报,2009,29(7):3978-3985.
    [5]
    朱玉英,侯瑞贤,杨晓锋,龚静.耐热青菜杂交新品种'新夏青'选育[J].上海农业学报,2006,22(4):10-13.
    [6]
    黄俊,郭世荣,吴震,李式军. 6个不同不结球白菜品种光合作用特性的研究[J].西北植物学报,2006,26(6):1183-1189.
    [7]
    黄俊,郭世荣,吴震,李式军.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2007,18(2):352-358.
    [8]
    胡春梅,侯喜林,王旻.低温胁迫对不结球白菜光合及叶绿素荧光特性的影响[J].西北植物学报,2008,28(12):2478-2484.
    [9]
    李晓梅.高温对不结球白菜幼苗光合特性的影响[J].安徽农业科学, 2010, 38(9): 4505-4506.
    [10]
    张永吉,徐海,张慧,陈龙正,宋波,袁希汉.普通白菜(小白菜)耐湿性鉴定方法[J].中国蔬菜,2012(6):53-57.
    [11]
    王华,侯瑞贤,李晓锋,朱红芳,朱玉英,侯喜林.淹水胁迫对不结球白菜渗透调节物质含量的影响[J].植物生理学报,2013,49(1):29-33.
    [12]
    郝建军,康宗丽,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007.
    [13]
    Roden JS, Ball MC. The effect of elevated(CO2)on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficits[J]. Plant Physiol, 1996,111(3): 909-919.
    [14]
    Glaz B, Morris DR, Daroub SH. Sugarcane photosynthesis, transpiration, and stomatal conduc-tance due to flooding and water table[J]. Crop Sci, 2004,44(5): 1633-1641.
    [15]
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33(10): 317-345.
    [16]
    李艳,付艳东,马艳春,杜远鹏,翟衡.淹水对不同葡萄砧木生长及光合特性的影响[J].中国农业科学,2013,46(5):995-1004.
    [17]
    马瑞娟,张斌斌,蔡志翔,沈志军,俞明亮.不同桃砧木品种对淹水的光合响应及其耐涝性评价[J].园艺学报,2013,40(3): 409–416.
    [18]
    陈昕,徐宜凤,张振英.干旱胁迫下石灰花楸幼苗叶片解剖结构和光合生理响应[J].西北植物学报,2012,32(1):111-116.
    [19]
    李昌晓,钟章成.三峡库区消落带土壤水分变化条件下池杉幼苗光合生理响应的模拟研究[J].水生生物学报,2005,29(6):712-716.
    [20]
    Pesoli P, Gratani L, Larcher W. Responses of Quercus ilex from different provenances to experimentally imposed water stress[J]. Biol Plant, 2003, 46(4): 577-581.
    [21]
    Jones DT, Sah JP, Ross MS, Oberbauer SF, Hwang B, Jayachandran K. Responses of twelve tree species common in Everglades tree islands to simulated hydrologic regimes[J]. Wetlands,2006, 26(3): 830-844.
    [22]
    Lavinsky AO, Sant'Ana CDS, Mielke MS, De Almeida AF, Gomes FP, Franca S, Silva DDC. Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings[J]. New Forest, 2007, 34(1): 41-50.
    [23]
    Maxwell K, Johnson N. Chlorophyll fluorescence a practical guide[J]. J Exp Bot, 2000,51(345): 659-668.
    [24]
    姜玉萍,丁小涛,张兆辉,杨晓锋.淹水对不同葫芦科作物叶绿素荧光特性的影响[J].中国瓜菜,2012, 25(1): 16-19.
    [25]
    Terashima I, Funayama S, Sinoike K. The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem Ⅰ, not photosystem Ⅱ[J]. Planta, 1994, 193(2): 300-306.
  • Related Articles

    [1]Kang Hongwei, Yue Kangjie, Liu Huixin, Wang Jiali, Tian Xuping. Effect of sex and leaf shape on gas exchange parameters and chlorophyll fluorescence characteristics in Sabina chinensis (L.) Ant[J]. Plant Science Journal, 2024, 42(6): 791-799. DOI: 10.11913/PSJ.2095-0837.23391
    [2]Li Li-Jun, Miao Ling-Feng, Li Da-Dong, Yang Fan. Effects of drought and nitrogen application on the growth and chlorophyll fluorescence characteristics of Dalbergia odorifera T. Chen - Hevea brasiliensis Muell. Arg seedlings[J]. Plant Science Journal, 2023, 41(3): 358-369. DOI: 10.11913/PSJ.2095-0837.22196
    [3]MA Qiong-fang, YAN Hong, KONG Wei-yao, CHEN Ling, LI Wei-dong, ZOU Chang-lin, ZHANG Chao-fan. Effects of hydrology and salinity on chlorophyll fluorescence parameters of Scirpus nipponicus Makino[J]. Plant Science Journal, 2021, 39(6): 654-662. DOI: 10.11913/PSJ.2095-0837.2021.60654
    [4]Ji Yu-Lu, Yang Wei, Li Han, Cao Hua, Lu Lin, Tian Min, Sun Dan, Li Dong-Hui. Study on chloroplast ultrastructure, photosynthetic pigments, and chlorophyll fluorescence characteristics of leaf color mutants in Dendrobium officinale Kimura et Migo[J]. Plant Science Journal, 2020, 38(2): 260-268. DOI: 10.11913/PSJ.2095-0837.2020.20260
    [5]Pan Jun-Feng, Wang Bo, Li Ding-Yu, Feng Qi, Guo Mu-Yu, Li Lu, Lu Hong-Yu, She Dan, Yu Yao-Wen, Zhao Tian-Ming, Cao Yu. Effects of mechanical damage on leaf veins of nine aquatic plants[J]. Plant Science Journal, 2019, 37(2): 230-239. DOI: 10.11913/PSJ.2095-0837.2019.20230
    [6]Huang Jie, Chen Zong-Fu, Yin Li-Ying, Li Man-Qing, Wang Ling-Hui, Teng Wei-Chao. Effects of three plant exogenous hormones on the biomass, chlorophyll fluorescence parameters, and photosynthetic characteristics of Tabebuia chrysantha seedlings[J]. Plant Science Journal, 2018, 36(5): 745-754. DOI: 10.11913/PSJ.2095-0837.2018.50745
    [7]Yuan Guo-Di, Liu Wen-Yao, Shi Xian-Meng, Fan Xiao-Yang. Effects of water content change on photosynthetic and fluorescence parameters of four bole epiphytic bryophytes in montane moist evergreen broad-leaved forest in the Ailao Mountains[J]. Plant Science Journal, 2018, 36(4): 603-611. DOI: 10.11913/PSJ.2095-0837.2018.40603
    [8]PAN Qiu-Hong, SHI Guo-Xin, XU Qin-Song, YANG Hai-Yan, WANG Hong-Xia, XU Ye, CHEN Hui. Phytotoxicity of Cu2+ on Physiolodical Indices and Ultrastructural Responses in Leaves of Trapa bispinosa Roxb.[J]. Plant Science Journal, 2009, 27(5): 527-532.
    [9]WANG Guo-Li, GUO Zhen-Fei. Effects of Methyl Viologen on Chlorophyll Fluorescence Parametersin Rice Cultivars with Different Cold-sensitivity[J]. Plant Science Journal, 2008, 26(1): 81-86.
    [10]Chen Lisong, Liu Xinghui. EFFECT OF HIGH TEMPERATURE STRESS ON CELL MEMBRANE PERMEABILITY AND PHOTOSYNTHETIC PIGMENT IN LEAVES OF PEACH AND POMELO[J]. Plant Science Journal, 1997, 15(3): 233-237.

Catalog

    Article views (1161) PDF downloads (1325) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return