Citation: | SUN Yu-Chen, YU Hao, ZHENG Zhai-Sheng, ZHANG Shang-Fa, DING Lin-Xian, CAI Miao-Zhen. Comparison of Iron Plaque Characterization and Associated Elements on the Surface of Lotus Rhizomes[J]. Plant Science Journal, 2015, 33(2): 244-250. DOI: 10.11913/PSJ.2095-0837.2015.20244 |
[1] |
刁英, 韩延闯, 何建军, 王清章, 胡中立, 周明全. 莲藕研究进展[J]. 氨基酸和生物资源, 2004, 26(1): 8-11.
|
[2] |
徐蝉, 胡美华, 郭得平. 浙江省水生蔬菜产业发展现状及展望[J]. 长江蔬菜, 2009(16): 106-109.
|
[3] |
周俊辉, 孔祥伟, 黄政华. 莲藕除锈与保鲜的初步研究[J]. 江西农业学报, 2007, 19(3): 51-53.
|
[4] |
程立宝, 李淑艳, 李岩, 尹静静, 陈学好, 李良俊. 莲藕根状茎膨大过程中淀粉合成相关基因的表达[J]. 中国农业科学, 2012, 45(16): 3330-3336.
|
[5] |
杨美, 付杰, 向巧彦, 刘艳玲. 利用AFLP 分子标记技术构建花莲核心种质资源[J]. 中国农业科学, 2011, 44(15): 3193-3205.
|
[6] |
许金蓉, 王清章, 何建军, 周明全, 胡中立. 莲(地下膨大茎)贮藏及其生理生化研究进展[J]. 氨基酸和生物资源, 2003, 25(2): 4-7.
|
[7] |
刘冬碧, 陈防, 熊桂云, 巴瑞先, 张富林, 张继铭, 余延丰. 钾营养对莲藕产量形成和氮磷钾养分累积分配的影响[J]. 中国农业科学, 2010, 43(5): 978-985.
|
[8] |
张长伟, 徐文娟, 王玉华, 叶月. 有机、无机肥对莲藕生长和品质的影响及施肥效益分析[J]. 中国农学通报, 2012, 28(7): 261-264.
|
[9] |
Taylor GJ, Crowder AA. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants[J]. Am J Bot, 1983, 70(8):1254-1257.
|
[10] |
鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2000: 263-270.
|
[11] |
Syu CH, Jiang PY, Huang HH, Chen WT, Lin ZH, Lee DY. Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter[J]. Soil Sci Plant Nut, 2013, 59(3): 463-471.
|
[12] |
Xu B, Yu S. Root iron plaque formation and cha-racteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa)[J]. Ann Bot, 2013, 111(6): 1189-1195.
|
[13] |
Feng H, Qian Y, Gallagher FJ, Wu MY, Zhang WG, Yu LZ, Zhu QZ, Zhang KW, Liu CJ, Tappero R. Lead accumulation and association with Fe on Typha latifolia root from an urban brown field site[J].Environ Sci Pollut R, 2013, 20(6): 3743-3750.
|
[14] |
Batty LC, Baker AJM, Wheeler BD, Curtis CD. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel[J]. Ann Bot, 2000, 86(3): 647-653.
|
[15] |
Kusel K, Chabbi A, Trinkwalter T. Microbial processes associated with roots of bulbous rush coated with iron plaques[J]. Microb Ecol, 2003, 46(3): 302-311.
|
[16] |
Yang JX, Tam NFY, Ye ZH. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J]. Plant Soil, 2014, 374(1-2): 815-828.
|
[17] |
Wu C, Ye ZH, Li H, Wu SC, Deng D, Zhu YG, Wang MH. Do radial oxygen loss and external ae-ration affect iron plaque formation and arsenic accumulation and speciation in rice[J].J Exp Bot, 2012, 63(8): 2961-2970.
|
[18] |
Li H, Ye ZH, Wei ZJ, Wong MH. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants[J]. Environ Pollut, 2011, 159(1): 30-37.
|
[19] |
Laskov C, Horn O, Hupfer M. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus[J].Aquat Bot, 2006, 84(4): 333-340.
|
[20] |
Emerson D, Weiss JV, Megonigal JP. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants[J]. Appl Environ Microb, 1999, 65(6): 2758-2761.
|
[21] |
Jia Y, Huang H, Chen Z, Zhu YG. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere[J].Environ Sci Technol, 2014, 48(2): 1001-1007.
|
[22] |
Huang H, Zhu YG, Chen Z, Yin XX, Sun GX. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil[J].J Soil Sediments, 2012, 12(3): 402-410.
|
[23] |
Lee CH, Hsieh YC, Lin TH, Lee DY. Iron plaque formation and its effect on arsenic uptake by diffe-rent genotypes of paddy rice[J]. Plant Soil, 2013, 363(1-2): 231-241.
|
[24] |
Liu WJ, Zhu YG, Smith FA, Smith SE. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture[J]. J Exp Bot, 2004, 55(403): 1707-1713.
|
[25] |
Wang X, Yao HX, Wong MH, Ye ZH. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.)[J]. Environ Geochem Hlth, 2013, 35(6): 779-788.
|
[26] |
Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA.Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environ Sci Technol, 2006, 40(18): 5730-5736.
|
[27] |
傅友强, 于智卫, 蔡昆争, 沈宏. 水稻根表铁膜形成机制及其生态环境效应[J]. 植物营养与肥料学报, 2010, 16(6): 1527-1534.
|
[28] |
Chen RF, Shen RF, Gu P, Xiong XY, Du CW, Ma JF. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress[J]. Ann Bot, 2006, 98(2): 389-395.
|
[29] |
Huang H, Zhu YG, Chen Z, Yin XX, Sun GX. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil[J].J Soil Sediments, 2012, 12(3): 402-410.
|
[30] |
Batty LC, Baker AJM, Wheeler BD. Aluminium and phosphate uptake by Phragmites australis: The role of Fe, Mn and Al root plaques[J]. Ann Bot, 2002, 89(4): 443-449.
|
[31] |
王震宇, 刘利华, 温胜芳, 彭昌盛, 邢宝山, 李锋民. 2种湿地植物根表铁氧化物胶膜的形成及其对磷素吸收的影响[J]. 环境科学, 2010, 31(3): 781-786.
|
[1] | Yang Fu-Rong, Ran Jia-Dong, Xie Cai-Xiang. Quality variation in Angelica sinensis (Oliv.) Diels based on chemical composition and ecological characteristics[J]. Plant Science Journal, 2022, 40(6): 782-790. DOI: 10.11913/PSJ.2095-0837.2022.60782 |
[2] | Ran Jia-Dong, Yang Fu-Rong, Xie Cai-Xiang. Spatial variation in chemical components of Rheum palmatum L. and climatic response characteristics[J]. Plant Science Journal, 2021, 39(5): 496-505. DOI: 10.11913/PSJ.2095-0837.2021.50496 |
[3] | Chen Yao, Zhang Zhi-Peng, Zhang Zhao, Zhang Yang, Xie Cai-Xiang, Xu Shuo. Effect of soil factors on the content of chemical components in Phellodendri Amurensis Cortex[J]. Plant Science Journal, 2019, 37(6): 797-807. DOI: 10.11913/PSJ.2095-0837.2019.60797 |
[4] | LIAO Zhen-Ni, HUANG Qing, CHENG Qi-Ming, YU Xiao-Ying, LI Xiao-Peng, LIU En-Xue. Effect of Plant Age on Botanical Characteristics and Chemical Composition of Essential Oil from Lavandin[J]. Plant Science Journal, 2014, 32(5): 517-521. DOI: 10.11913/PSJ.2095-0837.2014.50517 |
[5] | LIAO Si-Hong, CHEN Jian-Jun, WANG Ying. Chemical Constituents of Epimedium truncatum[J]. Plant Science Journal, 2013, 31(4): 385-390. DOI: 10.3724/SP.J.1142.2013.40385 |
[6] | XU Lei, YAO Wen-Qian, JI Hong-Bing, DAI Jian-Yue, QIN Xin-Sheng, ZHANG Rong-Jing, ZHENG Xi-Long, XING Fu-Wu. Investigation,Determination of Chemical Compositions and Screening of Non-food Bio-diesel Plant in Hainan Province[J]. Plant Science Journal, 2011, 29(1): 99-108. |
[7] | CAO Yu-Fang, LIN Ru, HU Zheng-Hai. Studies on the Developmental Anatomy of Rhizome of Dioscorea zingiberensis and Its Histochemistry[J]. Plant Science Journal, 2003, 21(4): 288-294. |
[8] | LI Zhi-Jun, YU Jun, XU Chong-Zhi, XU Ya-Li, DUAN Huang-Jin. Comparative Studies on the Chemical Composition and Vigour of Pollens of Populus euphratica and Populus pruinosa[J]. Plant Science Journal, 2002, 20(6): 453-456. |
[9] | Nan Yusheng, Ke Zhiguo, Lu Lingxian. THE ANTIFEEDING EFFECTS OF THE CHEMICAL COMPOSITIONS OF ANGLED BETTERSWEET SEED OIL ON INSECT[J]. Plant Science Journal, 1994, 12(1): 95-96. |
[10] | Huang Yuanzheng, Wen Mingzhang, Zhao Hui, Ren Weijian. A STUDY ON THE CHEMICAL COMPOSITION OF THE ESSENTIAL OIL OF CINNAMOMUM LONGEPANICULATUM LEAF[J]. Plant Science Journal, 1986, 4(1): 59-63. |