Advance Search
ZHANG Shu-Bin, ZHANG Jiao-Lin, CAO Kun-Fang. Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species[J]. Plant Science Journal, 2016, 34(1): 117-126. DOI: 10.11913/PSJ.2095-0837.2016.10117
Citation: ZHANG Shu-Bin, ZHANG Jiao-Lin, CAO Kun-Fang. Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species[J]. Plant Science Journal, 2016, 34(1): 117-126. DOI: 10.11913/PSJ.2095-0837.2016.10117

Effects of Seasonal Drought on Water Status, Leaf Spectral Traits and Fluorescence Parameters in Tarenna depauperata Hutchins, a Chinese Savanna Evergreen Species

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(31470470,31570406) and the Joint Foundation of National Natural Science of China and Natural Science of Yunnan Province (U1202234).

undefined

undefined

More Information
  • Received Date: August 31, 2015
  • Available Online: October 31, 2022
  • Published Date: February 27, 2016
  • Chinese savanna evergreen plants can tolerate prolonged drought stress for more than half a year, but the mechanisms underlying the eco-physiological responses of these evergreen plants to drought stress are poorly understood. We selected a dominant evergreen species, Tarenna depauperata Hutchins, in this study and measured predawn leaf water potential, pressure-volume curves, leaf gas exchange, leaf spectral traits, chlorophyll fluorescence and P700 in the rainy and dry seasons, respectively. Results showed that predawn leaf water potential (Ψpd) decreased to-4.5 MPa in the dry season. Compared with the values in the rainy season, leaf specific hydraulic conductivity (KL) decreased by 49.5%, the chlorophyll reflectance index (NDVI) decreased by 40.6%, and the anthocyanin reflectance index (ARI) increased to 0.074 in the dry season, which was 12.3 times as much as the value of the rainy season. The seasonal differences in Ψpd, KL, NDVI and ARI were significant (P< 0.05). The maximum quantum yield of PSⅡ (Fv/Fm) decreased from 0.8 in the rainy season to 0.72 in the dry season (P< 0.05), indicating photoinhibition in PSⅡ; however, the activity of PSⅠ (Pm) remained stable during peak drought. In addition, maximum non-photochemical quenching (NPQ) increased by 31% and the maximum cyclic electron flow (CEF) decreased by 66% in the dry season compared with those in the rainy season. These results suggested that CEF was significantly inhibited by prolonged seasonal drought. The downregulation of light harvesting efficiency and the enhancement of NPQ played important roles in the photoprotection of this Chinese savanna evergreen woody species.
  • [1]
    Santiago LS, Kitajima K, Wright SJ, Mulkey SS. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gra-dient in lowland tropical forest[J]. Oecologia, 2004, 139(4): 495-502.
    [2]
    Brodribb TJ, Holbrook NM. Diurnal depression of leaf hydraulic conductance in a tropical tree species[J]. Plant Cell Environ, 2004, 27(7): 820-827.
    [3]
    Cornic G, Ghashghaie J, Genty B, Briantais JM. Leaf photosynthesis is resistant to a mild drought stress[J]. Photosynthetica, 1992, 27(3): 295-309.
    [4]
    Cornic G. Drought stress and high light effects on leaf photosynthesis[M]//Baker NR ed. Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Oxford: BIOS Scientific Publ., 1994: 297-313.
    [5]
    Brodribb TJ, Feild TS. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests[J]. Plant Cell Environ, 2000, 23(12): 1381-1388.
    [6]
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S. Photoinhibition of photosystem Ⅱ under environmental stress[J]. BBA-Bioenergetics, 2007, 1767(6): 414-421.
    [7]
    Oguchi R, Terashima I, Kou J, Chow WS. Operation of dual mechanisms that both lead to photoinactivation pho-tosystem Ⅱ in leaves by visible light[J]. Physiol Plantarum, 2011, 142(1): 47-55.
    [8]
    Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystem [WTBZ] I[WTXFZ] and photosystem Ⅱ[J]. J Photoch Photobio B, 1999, 48(S 2/3):136-141.
    [9]
    Sonoike K. Photoinhibition and protection of photosystem [WTBZ] I[WTXFZ] [M]//Golbeck JH ed. Photosystem [WTBZ] I[WTXFZ] : the Light-driven Plastocyanin: Ferredoxinoxidoreductase, Series Advances in Photosynthesis and Respiration. Dordrecht: Springer, 2006: 657-668.
    [10]
    Munné-Bosch S, Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants[J]. Planta, 2000, 210(6): 925-931.
    [11]
    Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 2012, 235(4): 819-828.
    [12]
    Wang JH, Lia SC, Sun M, Huang W, Cao H, Xu F, Zhou NN, Zhang SB. Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy[J]. Physiol Plant, 2012, 147(3): 283-295.
    [13]
    Huang W, Fu PL, Jiang YJ, Zhang JL, Zhang SB, Hu H, Cao KF. Differences in the responses of photosystem [WTBZ] I[WTXFZ] and photosystem Ⅱ of three tree species Cleistanthus sumatranus, Celtis philippensis and Pistacia weinmannifolia exposed to a prolonged drought in a tropical limestone forest[J]. Tree Physiol, 2013, 33(2): 211-220.
    [14]
    许再富,陶国达,禹平华, 王耀龙. 元江干热河谷山地五百年来植被变迁探讨[J]. 云南植物研究, 1985, 7(4): 403-412.

    Xu ZF, Tao GD, Yu PH, Wang YL. An approach to the vegetational changes from Yuanjiang dry-hot valley of Yunnan in the last 500 years[J]. Acta Botanica Yunnanica, 1985, 7(4): 403-412.
    [15]
    Zhang JL, Zhu JJ, Cao KF. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China[J]. Trees-Struct Funct, 2009, 21(6): 631-643.
    [16]
    张教林,郝广友,曹坤芳. 云南元江干热河谷木本植物的物候[J]. 武汉植物学研究, 2009, 27(1): 76-82.

    Zhang JL, Hao GY, Cao KF. Phenology of woody species in Yuanjiang dry-hot valley in Yunnan Province[J]. Journal of Wuhan Botanical Research, 2009, 27(1): 76-82.
    [17]
    Gamon JA, Serrano L, Surfus JS. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels[J]. Oecologia, 1997, 112(4): 492-501.
    [18]
    Zhang YJ, Yang QY, Lee DW, Goldstein G, Cao KF. Extended leaf senescence promotes carbon gain and nu-trient restoration: importance of maintaining winter photos-ynthesis in subtropical forests[J]. Oecologia, 2013, 173(3): 721-730.
    [19]
    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem Ⅰ and is essential for photoprotection in Arabidopsis[J]. Cell, 2002, 110(3): 361-371.
    [20]
    Miyake C, Miyata M, Shinzaki Y, Tomizawa K. CO2 response of cyclic electron flow around PSⅠ (CEF-PSⅠ) in tobacco leaves-relative electron fluxes through PSⅠ and PSⅡ determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence[J]. Plant Cell Physiol, 2005, 46(4): 629-637.
    [21]
    Roberts AG, Oparka KJ. Plasmadesmata and thecontrol of symplastic transport[J]. Plant Cell Environ, 2003, 26(1): 103-24.
    [22]
    Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism[J]. Annu Rev Plant Phys Mol Bio, 1989, 40(1): 19-38.
    [23]
    Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis[J]. Trends Plant Sci, 2000, 5(5): 187-188.
    [24]
    Eichelman H, Laisk A. Rubulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesphyll conductance in leaves[J]. Plant Physiol, 1999, 119(1): 179-189.
    [25]
    刘金玉, 付培立, 王玉杰, 曹坤芳. 热带喀斯特森林常绿和落叶榕树的水力特征和水分关系与抗旱策略[J]. 植物科学学报, 2012, 30(5): 484-493.

    Liu JY, Fu PL, Wang YJ, Cao KF. Different drought-adaptation strategies as characterized by hydraulic and water-relations traits of evergreen and deciduous figs in a tropical karst forest[J]. Plant Science Journal, 2012, 30(5): 484-493.
    [26]
    陈卫元, 曹晶, 姜卫兵. 干早胁迫对红叶石楠叶片光合生理特性的影响[J]. 中国农学通报, 2007, 23(8): 217-220.

    Chen WY, Cao J, Jiang WB. Effects of drought stress on photosynthetic characteristics of Photinia frasery dress[J]. Chinese Agricultural Science Bulletin, 2007, 23(8): 217-220.
    [27]
    Feild TS, Lee DW, Holbrook NM. Why leaves turn red in autumn: the role of anthocyanins in senescing leaves of redoiser dogwood[J]. Plant Physiol, 2001, 127(3): 566-574.
    [28]
    Zhang S, Scheller HV. Photoinhibition of photosystem Ⅰ at chilling temperature and subsequent recovery in Arabidopsis[J]. Plant Cell Physiol, 2004, 45(11): 1595-1602.
    [29]
    Gallé A, Haldimann P, Feller U. Photosynthetic perfor-mance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytol, 2007, 174(4): 799-810.
    [30]
    Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery[J]. EMBO, 2001, 20(20): 5587-5594.
    [31]
    Golding AJ, Johnson GN. Down-regulation of linear and activation of cyclic electron transport during drought[J]. Planta, 2003, 218(1): 107-114.
    [32]
    Ettinger WF, Clear AM, Fanning KJ, Peck ML. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane[J]. Plant Physiol, 1999, 119(4): 1379-1385.
    [33]
    Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR. How does cyclic electron flow alleviate photoinhibition in Arabidopsis[J]. Plant Physiol, 2009, 149(3): 1560-1567.
  • Related Articles

    [1]Lei Ming, Zhao Zhi-Qiang, Chen Wen-Shuai, Wang Xi-Long. Bulbophyllum sonii Aver. & N.V. Duy, a new record of Orchidaceae from China[J]. Plant Science Journal, 2022, 40(3): 310-314. DOI: 10.11913/PSJ.2095-0837.2022.30310
    [2]Wang Jun-Jie, Cheng Yue-Hong, Ding Shi-Xiong, Wang Yan, Peng Shuai, Yang Jia-Xin, Sun Hong-Ou, Leng Zhi-Cheng, Hu Guang-Wan. Six new records of Orchidaceae in Sichuan Province[J]. Plant Science Journal, 2021, 39(3): 223-228. DOI: 10.11913/PSJ.2095-0837.2021.30223
    [3]Liu Fei-Hu, Huang Lang, Liu Huan, Tan Shao-Lin, Luo Huo-Lin, Yang Bo-Yun. Flora of Orchidaceae in Luoxiao Mountains and its ecogeographical characteristics[J]. Plant Science Journal, 2020, 38(4): 467-475. DOI: 10.11913/PSJ.2095-0837.2020.40467
    [4]Chen Li-Jun, Zhou Hong-Bo, Liu Zhong-Jian, Zheng Fang, Wang Yu, Rao Wen-Hui. Cymbidium×malipoense, a new hybrid of Orchidaceae from Yunnan, China[J]. Plant Science Journal, 2020, 38(2): 181-184. DOI: 10.11913/PSJ.2095-0837.2020.20181
    [5]DENG Xiao-Xiang, CHEN Yi-Ke, RAO Wen-Hui, CHEN Li-Jun. Dendrobium luoi, a New Species of Orchidaceae from China[J]. Plant Science Journal, 2016, 34(1): 9-12. DOI: 10.11913/PSJ.2095-0837.2016.10009
    [6]CHEN Li-Jun, LIU Zhong-Jian. Apostasia shenzhenica,A New Species of Apostasioideae(Orchidaceae) from China[J]. Plant Science Journal, 2011, 29(1): 38-41.
    [7]WANG Yi, WANG Yan. Habenaria anomaliflora,a New Record of Orchidaceae from China[J]. Plant Science Journal, 2010, 28(6): 696-697.
    [8]CHEN Li-Jun, LIU Zhong-Jian. Dendrobium moniliforme var.malipoense,A New Variety of Orchidaceae from China[J]. Plant Science Journal, 2008, 26(4): 357-360.
    [9]CHEN Li-Jun, RAO Wen-Hui. The Occurrence of Habenaria leptoloba(Orchidaceae) in Guangdong[J]. Plant Science Journal, 2008, 26(3): 255-258.
    [10]Chen Hengbin, Chang Yongtian. A NEW RECORDED GENUS OF FAMILY ORCHIDACEAE FROM CHINA──STIGMATODACTYLUS[J]. Plant Science Journal, 1994, 12(4): 324-326.
  • Cited by

    Periodical cited type(6)

    1. 黄文俊,王周倩,张琦,杨洁,申素云,钟彩虹. ‘金圆’猕猴桃在两个地区果实生长发育动态变化研究. 植物科学学报. 2023(04): 531-539 . 本站查看
    2. 胡娟,陈梦军,杨永奎,邱炼,李显航,王旭莲. 黔西北山区不同配方施肥对猕猴桃产量的影响. 农技服务. 2021(01): 40-42 .
    3. 夏文娟,郑丽,孙雷明,徐绳武,施仕胜,柯金贤,余安安. 中国猕猴桃杂交育种现状与展望. 湖北农业科学. 2021(21): 12-15 .
    4. 涂贵庆,廖光联,刘青,李帮明,黄春辉,贾东峰,赵尚高,徐小彪. 中华猕猴桃黄肉新品种“奉黄1号”的生物学特性及其主要栽培技术. 中国南方果树. 2020(02): 153-156 .
    5. 黄文俊,江昌应,陈美艳,刘小莉,张琦,闫春林,钟彩虹. 三个产地猕猴桃品种‘金梅’在低温贮藏及货架期内的采后生理和品质变化. 植物科学学报. 2020(05): 687-695 . 本站查看
    6. 陈镇,李秀丽,陈志伟,乐有章,翟敬华,张鸿,戢小梅. 中国猕猴桃育种及品种选育研究. 湖北农业科学. 2019(S2): 300-307+312 .

    Other cited types(3)

Catalog

    Article views (1199) PDF downloads (1490) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return