Advance Search
WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175
Citation: WU Yan-Fang, ZHANG Jian, LEI Jing, XU Feng, WU Li-Li. Anatomical Structure of Vegetative Organs of Ginkgo biloba L.[J]. Plant Science Journal, 2016, 34(2): 175-181. DOI: 10.11913/PSJ.2095-0837.2016.20175

Anatomical Structure of Vegetative Organs of Ginkgo biloba L.

Funds: 

This work was supported by a grant from the National Natural Science Foundation of China(31370680).

More Information
  • Received Date: October 27, 2015
  • Revised Date: November 19, 2015
  • Available Online: October 31, 2022
  • Published Date: April 27, 2016
  • To confirm the anatomical structure and distribution of endophytes in the vegetative organs of different aged ginkgoes, we observed the anatomical structure of Ginkgo biloba L.roots, stems and leaves by paraffin section. Results showed that:(1) The root of annual G. biloba did not have a resin canal, but did have a few endophytes and a large number of albuminous cells in the cortex cells. The perennial root had a resin canal and many endophytes, as well as needle-like crystals, but did not have albuminous cells. (2) The young stem had an obvious cuticle, numerous albuminous cells in the cortex cells, and a developed phloem ray and central pith. The latter consisted of a large number of parenchyma cells, with albuminous cells and crystal druses but without a resin canal in the pith. (3) The spongy tissue of G. biloba leaves had a loose structure. There were resin canals and crystal druses in the mesophyll cells, and stomata with invagination under the epidermis, indicating that G. biloba had anatomical characteristics for drought tolerance. Based on the structure of the vegetative organs, this study helps clarify the relationship between different aged G. biloba and the ecological environment and provides reference for the further study of G. biloba endophytes.
  • [1]
    胡云虹, 彭斌, 齐小晴, 刘学群, 余光辉. 银杏叶愈伤组织和叶中超氧化物歧化酶、总黄酮类抗氧化活性剂活性的比较分析[J].武汉植物学研究, 2010, 28(4):521-526.

    Hu YH, Peng B, Qi XQ, Liu XQ, Yu GH. Comparative assay of superoxide dismutase and total flavone antioxidant activities in leaf-callus and leaves of Ginkgo biloba L.[J].Journal of Wuhan Botanical Research, 2010, 28(4):521-526.
    [2]
    郑鹏, 史红文, 邓红兵, 廖建雄. 武汉市65个园林树种的生态功能研究[J].植物科学学报, 2012, 30(5):468-475.

    Zheng P, Shi HW, Deng HB, Liao JX. Study on the ecological functions of sixty-five garden species in Wuhan city, China[J].Plant Science Journal, 2012, 30(5):468-475.
    [3]
    Liao YL, Xu F, Huang XH, Zhang WW, Cheng H, Wang XH, Cheng SY, Shen YB. Characterization and transcri-ptional profiling of Ginkgo biloba mevalonate diphosphate decarboxylase gene (GbMVD) promoter towards light and exogenous hormone treatments[J].Plant Mol Biol Rep, 2015, DOI: 10.1007/s11105-015-0947-x.
    [4]
    Xu Y,Wang GB, Cao FL, Zhu CC, Wang GY, Yousry AE. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.)[J].New Forests, 2014, 45(6):765-776.
    [5]
    邢世岩, 孙霞, 李可贵,有祥亮. 银杏叶生长发育规律的研究[J].林业科学, 1997, 33(3):267-273.

    Xing SY, Sun X, Li KG, You XL.Growth and development of Ginkgo biloba Leaves[J].Scientia Silvae Sinicae,1997, 33(3):267-273.
    [6]
    陈立群, 李承森. 银杏(Ginkgo biloba)叶表皮特征及其气孔的发育[J].植物研究,2004, 24(4):417-422.

    Chen LQ, Li CS.The epidermal characters and stomatal development of Ginkgo biloba[J].Bulletin of Botanical Research, 2004, 24(4):417-422.
    [7]
    韩彪, 陈国祥, 高志萍, 魏晓东, 解凯彬, 杨贤松, 唐加红, 刘丹. 两个银杏品种叶片衰老过程中叶绿体功能特性的比较[J].南京师大学报:自然科学版, 2009, 32(3):99-103.

    Han B, Chen GX, Gao ZP, Wei XD, Xie KB, Yang XS, Tang JH, Liu D. The comparison of chloroplasts function characteristics during leaf senescence in two Ginkgo varie-ties[J].Journal of Nanjing Normal University:Natural Science Edition, 2009, 32(3):99-103.
    [8]
    王扬, 房荣春, 林明明, 陆彦, 王莉, 金飚. 银杏叶发育过程的解剖结构观察[J].西北植物学报, 2011, 31(5):861-867.

    Wang Y, Fang RC, Lin MM, Lu Y, Wang L, Jin B. Anatomical structure dynamics of Ginkgo biloba L.leaves during annual growth and development[J].Acta Bot Boreal, 2011, 31(5):861-867.
    [9]
    张海龙, 李善春, 卢维浩, 雷燕萍, 曹福亮, 曹慧. 银杏内生真菌多样性与产黄酮类物质真菌的分离和鉴定[J].土壤, 2015, 47(1):135-141.

    Zhang HL, Li SC, Lu WH, Lei YP, Cao FL, Cao H. Distribution and identification of flavonoid-producing endophytic fungi in Ginkgo biloba L.[J].Soils, 2015, 47(1):135-141.
    [10]
    赵庆云. 产黄酮银杏内生菌的分离、纯化与液态培养[D].杨凌:西北农林科技大学, 2007. Zhao QY. Isolation and optimization of flavone-producing endophytes from Ginkgo biloba. L.[D].Yangling:Northwest A&F University, 2007.
    [11]
    Thongsandee W, Matsuda Y, Ito S. Temporal variations in endophytic fungal assemblages of Ginkgo biloba L.[J].J For Res, 2012, 17(17):213-218.
    [12]
    Qiu M, Xie RS, Shi Y, Zhang HH, Chen HM. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L.[J].Ann Microbiol, 2010, 60(1):143-150.
    [13]
    申屠旭萍, 俞晓平. 银杏中抗病原真菌的内生真菌的分离筛选[J].浙江农业学报, 2006, 18(5):317-320.

    Sentu XP, Yu XP. Endophytic fungi with anti-pathogenic fungi activities isolated from Gingkgo[J].Acta Agriculturae Zhejiangensis,2006, 18(5):317-320.
    [14]
    Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX. Diversity, distribution and biotechnological potential of endophytic fungi[J].Ann Microbiol, 2015, DOI: 10.1007/s13213-015-1153-7.
    [15]
    刘小莉. 银杏内生真菌分离鉴定及其抗菌抗氧化作用研究[D].南京:南京农业大学, 2007.

    Liu XL. Isolation and identification of endophytic fungi from Ginkgo biloba and study on antimicrobial and anttioxidant activity[D].Nanjing:Nanjing Agricultural University, 2007.
    [16]
    赵凤娟. 银杏演化结构研究[D].长春:东北师范大学, 2004.

    Zhao FJ. The research in evolution structure for Ginkgo biloba[D].Changchun:Northeast Normal University, 2004.
  • Related Articles

    [1]Zhang Dong, Song Shuaishuai, Shi Hongwen, Wei Xinzeng, Jiang Mingxi. Impacts of environmental filtering and dispersal limitation on rare and endangered plant communities of the eastern margin of the Qinghai-Tibet Plateau, China[J]. Plant Science Journal, 2025, 43(2): 201-209. DOI: 10.11913/PSJ.2095-0837.24091
    [2]Wang Meng-Hao, Ran Hang, Liu Yan-Yan, Sun Hua-Yue, Cao Ya-Nan, Wang Hong-Wei, Li Jia-Mei. Comparative chloroplast genomic and phylogenetic analysis of Aralia and related species[J]. Plant Science Journal, 2023, 41(2): 149-158. DOI: 10.11913/PSJ.2095-0837.22161
    [3]Cao Guan-Long, Zou Dian-Yang, Zhou Run, Li Lang, Li Jie. A study on the phylogeny and species diversity of the genus Cryptocarya in China[J]. Plant Science Journal, 2021, 39(4): 349-357. DOI: 10.11913/PSJ.2095-0837.2021.40349
    [4]Liu Zhi-E, Wang Chun-Hui, Liu Wei-Qi, Wang Xiao-Fan. Molecular phylogeny of Armeniaca based on nuclear and chloroplast gene sequences: Exploring the origin and genetic relationship of Armeniaca hongpingensis[J]. Plant Science Journal, 2018, 36(5): 633-641. DOI: 10.11913/PSJ.2095-0837.2018.50633
    [5]Sun Mei, Tian Kun, Zhang Yun, Wang Hang, Guan Dong-Xu, Yue Hai-Tao. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 2017, 35(6): 940-949. DOI: 10.11913/PSJ.2095-0837.2017.60940
    [6]Fan Miao, Wu Yu-Peng, Hu Rong-Gui, Jiang Yan-Bin. Diversity and distribution of bryophytes and their relationship with environmental factors in Wuhan[J]. Plant Science Journal, 2017, 35(6): 825-834. DOI: 10.11913/PSJ.2095-0837.2017.60825
    [7]HOU Rong, ZHANG Hua, YI Ling-Jun, LIU Jian-Gang, LÜ Rui, WANG Ying. Study on Epiphytic Bryophytes Species Diversity of Forest Ecosystems in the Ancient Rock Stream Periglacial Landform of the Liaoning Eastern Mountains[J]. Plant Science Journal, 2016, 34(6): 857-872. DOI: 10.11913/PSJ.2095-0837.2016.60857
    [8]ZHAO Zhi-Juan, LIU Guo-Xiang, HU Zheng-Yu. A New Combination Species of Freshwater Cladophorales and Its Phylogenetic Analysis[J]. Plant Science Journal, 2015, 33(3): 281-290. DOI: 10.11913/PSJ.2095-0837.2015.30281
    [9]WANG Chuan-Yi, GUO Bao-Lin. The Characteristics of the Frequently Used Nuclear Robosome Gene Spacers and Their Utilizations in Phylogenetic Study of Plants[J]. Plant Science Journal, 2008, 26(4): 417-423.
    [10]CHEN Shao-Feng, DONG Sui-Sui, WU Wei, SHI Su-Hua, ZHOU Pu-Hua. Phylogenetics of Triarrhena and Related Genera Based on ITS Sequence Data[J]. Plant Science Journal, 2007, 25(3): 239-244.
  • Cited by

    Periodical cited type(11)

    1. 李林霞,何兰君,席磊,冯子航,欧光龙. 中国南方松林地理替代分布规律及其气候主导因子研究. 西南林业大学学报(自然科学). 2024(01): 97-105 .
    2. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    3. 谢婧妍,贺晓慧,朱丽,郝瑞敏. 气候变化背景下云南沙棘在中国的潜在地理分布. 防护林科技. 2023(01): 24-29 .
    4. 赵鹏霞,杨旭,杨志玲,田朝霞,羊奕珣. 基于腊叶标本分析的木姜叶柯表型性状变异及地理分化研究. 江西农业大学学报. 2023(02): 285-297 .
    5. 周安晟,成彦丽,陈鸿,徐晨,张远兵. 基于MaxEnt模型预测含笑在中国的潜在适生区. 安徽科技学院学报. 2023(06): 19-27 .
    6. 唐梦,陈静,杨灵懿,贾翔,刘济铭,段劼. 气候变化下中国主要生物燃油树种分布与变迁. 生态学报. 2023(24): 10156-10170 .
    7. 缪菁,王勇,王璐,许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测. 南京林业大学学报(自然科学版). 2021(03): 193-198 .
    8. 覃元艺,陈曦. 石栎属物种果实类型及其系统演化研究进展. 云南民族大学学报(自然科学版). 2021(04): 311-320 .
    9. 陈禹衡,陆双飞,毛岭峰. 黄檀属珍稀树种未来适宜区变化预测. 浙江农林大学学报. 2021(04): 837-845 .
    10. 张晓龙,邓童,罗乐,李进宇. 单叶蔷薇潜在适宜区预测及其渐危机制研究. 西北植物学报. 2021(09): 1570-1582 .
    11. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .

    Other cited types(4)

Catalog

    Article views (1629) PDF downloads (2311) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return