Advance Search
WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280
Citation: WU Qiong-Fang, ZHANG Ying, LUO Shu-Huai, LI Ai-Fen, ZHANG Cheng-Wu. Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck[J]. Plant Science Journal, 2016, 34(2): 280-288. DOI: 10.11913/PSJ.2095-0837.2016.20280

Effects of Nitrogen Limitation on Biochemical Composition and Photosynthetic Physiology during Lipid Accumulation in Chlorella vulgaris Beijierineck

Funds: 

This work was supported by grants from the National Natural Science Foundation of China(41176105) and Fundamental Research Funds for the Central Universities(21614101).

undefined

More Information
  • Received Date: August 20, 2015
  • Revised Date: October 14, 2015
  • Available Online: October 31, 2022
  • Published Date: April 27, 2016
  • Microalgae of the genus Chlorella are capable of accumulating lipids when exposed to nutrient limitation (especially nitrogen) and are therefore considered promising organisms for biodiesel production. This study explored the effects of nitrogen limitation on biomass, biochemical components and photosynthetic physiological parameters of C.vulgaris Beijierineck, an oleaginous microalga. Growth experiments were carried out in modified BG-11 medium with four different initial concentrations of sodium nitrate (18.0, 9.0, 4.5 and 3.6 mmol/L). These four nitrogen concentrations had no remarkable influence on growth, but exerted considerable influence on lipid accumulation in C. vulgaris. Maximum lipid content and productivity were obtained in the 4.5 mmol/L group (48.32% of dry weight and 0.0931 g·L-1·d-1, respectively), which increased significantly (P<0.05) compared with those of the 18.0 mmol/L group. The content of carbohydrate and soluble protein in the four groups decreased with increased lipid accumulation; however, in the low nitrogen groups (4.5 mmol/L and 3.6 mmol/L), the soluble protein degraded rapidly for carbohydrate synthesis at the initial stage, but the accumulated carbohydrate at the initial stage eventually converted to lipid at the later stage of cultivation. The maximum efficiency of light energy conversion of PSⅡ (Fv/Fm), actual energy conversion efficiency (Yield), and relative electron transfer efficiency (ETR) all decreased significantly, and the change in F683/F718 suggested optical energy distribution and state transition between PSⅠ and PSⅡ. In addition, the initial and total Rubisco activity of C. vulgaris in the 18.0 mmol/L and 9.0 mmol/L groups both peaked on the third day and then declined, while the Rubisco activity in the low nitrogen groups declined constantly. The ratio of initial and total Rubisco activity tended to decline at first and then increase. In conclusion, nitrogen limitation promoted lipid accumulation in C. vulgaris, and carbon distribution and photosynthetic physiology changed markedly.
  • [1]
    Hankamer B, Lehr F, Rupprecht J. Photosynthetic biomass and H2 production by green algae:from bioengineering to bioreactor scale-up[J]. Physiol Plantarum, 2007, 131(1):10-21.
    [2]
    Demirbas A. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae:A solution to pollution problems[J]. Appl Energy, 2011, 88(10):3541-3547.
    [3]
    Tüccar G, Özgür T, Aydın K. Effect of diesel-microalgae biodiesel-butanul blends on performance and emissions of diesel engine[J]. Fuel, 2014, 132:47-52.
    [4]
    张虎, 温小斌, 王中杰, 李夜光, 耿亚洪. 一株富含碳水化合物微藻的筛选和分子鉴定[J]. 植物科学学报, 2014, 32(6):645-654.

    Zhang H, Wen XB, Wang ZJ, Li YG, Geng YH. Selection of a carbohydrate-rich microalgae and its molecular identification[J].Plant Science Journal, 2014, 32(6):645-654.
    [5]
    Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation[J]. Bioresour Technol, 2009, 100(17):2921-2926.
    [6]
    Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium[J]. Enzyme Microb Tech, 2000, 27(8):631-645.
    [7]
    Khotimchenko SV, Yakovleva IM. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance[J]. Phytochemistry, 2005, 66(1):73-79.
    [8]
    Renaud SM, Thinh LV, Lambrinidis G, Parry DL. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures[J]. Aquaculture, 2002, 211(1-4):195-214.
    [9]
    Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells[J]. J Biosci Bioeng, 2006, 101(3):223-226.
    [10]
    Berges JA, Falkowski PG. Physiological stress and cell death in marine phytoplankton:induction of proteases in response to nitrogen or light limitation[J]. Limnol Oceanogr, 1998, 43(1):129-135.
    [11]
    Dean AP, David CS, Estrada B, Pittman JK. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae[J]. Bioresour Technol, 2010, 101(12):4499-4507.
    [12]
    Liu WH, Huang ZW, Li P, Xia JF, Chen B. Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms[J]. J Exp Mar Biol Ecol, 2012, S418-419(3):24-29.
    [13]
    汪亚俊, 孙明哲, 李爱芬, 张成武. 不同氮素水平对产油尖状栅藻生长及光合生理的影响[J]. 中国生物工程杂志, 2014, 34(12):51-58.

    Wang YJ, Sun MZ, Li AF, Zhang CW. Effects of nitrogen concentration on the growth and photosynthetic physiology of Scenedesmus acuminatus[J]. China Biotechnology, 2014, 34(12):51-58.
    [14]
    Makino A. Rubisco and nitrogen relationships in rice:leaf photosynthesis and plant growth[J]. Soil Sci Plant Nutr, 2003, 49(3):319-327.
    [15]
    Jiang Y, Yoshida T, Quigg A. Photosynthetic perfor-mance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae[J]. Plant Physiol Bioch, 2012, 54:70-77.
    [16]
    Dragone G, Fernandes BD, Abreu AP, Vicente AA, Tei-xeira JA. Nutrient limitation as a strategy for increasing starch accumulation in microalgae[J]. Appl Energy, 2011, 88(10):3331-3335.
    [17]
    Pavel Přibyl, Vladislav Cepák, Vilém Zachleder. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris[J]. J Appl Phycol, 2013, 25(2):545-553.
    [18]
    Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J]. BBA-Mol Cell Bio L, 2005, 1738(1):63-71.
    [19]
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Fred S. Colorimetric method for determination of sugars and rela-ted substances[J]. Anal Chem, 1956, 28(3):350-356.
    [20]
    梁英, 冯力霞, 田传远, 王帅. 高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响[J]. 中国水产科学, 2007(6):961-968.

    Liang Y, Feng LX, Tian CY, Wang S. Effects of high temperature stress on chlorophyll fluorescence kinetics of Dunaliella salina and Pyramimonas sp.[J]. Journal of Fishery Sciences of China, 2007(6):961-968.
    [21]
    Gerard VA, Driscoll T. A spectrophotometric assay for Rubisco activity:Application to the kelp Laminaria saccharina and implications for radiometric assays[J]. J Phycol, 1996, 32(5):880-884.
    [22]
    Chen Y, Xu DQ. Two patterns of leaf photosynthetic response to irradiance transition from saturating to limiting one in some plant species[J]. New Phytol, 2006, 169(4):789-798.
    [23]
    Hu Q. Handbook of Microalgal Culture. Environmental Effects on Cell Composition[M]. Richmond:Wiley-Blackwell, 2007:83-94.
    [24]
    Scheible WL, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiol, 2004, 136(1):2483-2499.
    [25]
    Jiang CZ, Ishihara K, Satoh K, Katoh S. Loss of the photosynthetic capacity and proteins in senescing leaves at top positions of two cultivars of rice in relation to the source capacities of the leaves for carbon and nitrogen[J]. Plant Cell Physiol, 1999, 40(5):496-503.
    [26]
    Ördög V, Stirk WA, Bálint P, Staden J, Lovász C. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures[J]. J Appl Phycol, 2012, 24(4):907-914.
    [27]
    Dillschneider R, Steinweg C, Rosello-Sastre R, Posten C. Biofuels from microalgae:photoconversion efficiency during lipid accumulation[J]. Bioresour Technol, 2013, 142:647-654.
    [28]
    Li YT, Han DX, Sommerfeld M, Hu Q. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions[J]. Bioresour Technol, 2011, 102(1):123-129.
    [29]
    Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson YH. Oil accumulation in the model green alga Chlamydomonas reinhardtii:characterization, variability between common laboratory strains and relationship with starch reserves[J]. BMC Biotechnol, 2011, 11(1):7.
    [30]
    李卫芳, 王忠, 韩鹰, 顾蕴洁. 小麦Rubisco活化酶的纯化及其活性特性[J]. 中国农业科学, 2002, 35(8):929-933.

    Li WF, Wang Z, Han Y, Gu YJ. Purification and activity characteristics of Rubisco activase from wheat leaves[J]. Scientia Agricultura Sinica, 2002, 35(8):929-933.
    [31]
    常阿丽, 毛晓芳, 韩榕. He-Ne激光和增强UV-B辐射对小麦幼叶叶绿素荧光和Rubisco活化酶的影响[J]. 西北植物学报, 2013, 33(9):1823-1829.

    Chang AL, Mao XF, Han R. Effects of He-Ne laser and UV-B radiation on chlorophyll fluorescence and Rubisco activase of wheat leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(9):1823-1829.
    [32]
    Makino A, Nakano H, Mae T, Shimada T, Yamamoto N. Photosynthesis, plant growth and N allocation in transge-nic rice plants with decreased rubisco under CO2enrichment[J]. J Exp Bot, 2000, 51(1):383-389.
    [33]
    Hortensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence[J]. J Exp Bot, 2002, 53(370):927-937.
    [34]
    Simionato D, Block MA, La Rocca N, Jouhet J, Marechal E, Finazzi G, Morosinotto T. The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus[J]. Eukaryot Cell, 2013, 12(5):665-676.
    [35]
    Geider RJ, Roche JL, Greene RM, Olaizola M. Response of the photosynthetic apparatus of Phaeodactylum tricor-nutum (Bacillariophyceae)to nitrate, phosphate, or iron starvation[J]. J Phycol, 1993, 29(6):755-766.
  • Related Articles

    [1]ZHU Xiao-Yan, ZHANG Dan, LIANG Fang, WEN Xiao-Bin, LI Ye-Guang, GENG Ya-Hong. Effects of Environmental Factors on the Photosynthesis of Chlorella sp. XQ-20044[J]. Plant Science Journal, 2014, 32(1): 74-79. DOI: 10.3724/SP.J.1142.2014.10074
    [2]JIA Ling-Yun, SUN Kun, FENG Han-Qing, LI Yan, XUE Wei, DONG Huan-Huan. Photosynthesis and the Emission of Isoprene Are Mediated by Respiration[J]. Plant Science Journal, 2012, (2): 193-197. DOI: 10.3724/SP.J.1142.2012.20193
    [3]LI Lei, CAI Chuan-Tao. Effects of Light and Nitrogen Level on Leaf Growth and Photosynthesis of Rauvolfia vomitoria[J]. Plant Science Journal, 2010, 28(2): 206-212. DOI: 10.3724/SP.J.1142.2010.20206
    [4]OUYANG Zheng-Rong, WEN Xiao-Bin, GENG Ya-Hong, MEI Hong, HU Hong-Jun, ZHANG Gui-Yan, LI Ye-Guang. The Effects of Light Intensities, Temperatures, pH and Salinities on Photosynthesis of Chlorella[J]. Plant Science Journal, 2010, 28(1): 49-55.
    [5]LI Wei, YIN Li-Yan. The Electrochemical Methods Measuring Photosynthesis of Submerged Macrophytes[J]. Plant Science Journal, 2008, 26(1): 99-103.
    [6]YIN Da-Cong, GENG Ya-Hong, MEI Hong, OUYANG Zheng-Rong, HU Hong-Jun, LI Ye-Guang. The Effects of Several Environmental Factors on the Photosynthesis of Botryococcus braunii[J]. Plant Science Journal, 2008, 26(1): 64-69.
    [7]LI Xiao-Long, GENG Ya-Hong, LI Ye-Guang, HU Hong-Jun. The Advantages in Competition Based on the Photosynthetic Characteristics of Microcystis aeruginosa[J]. Plant Science Journal, 2006, 24(3): 225-230.
    [8]DENG Guang, LI Ye-Guang, HU Hong-Jun, QI Yu-Zao, GENG Ya-Hong, LI Zhong-Kui. Effects of Temperature, Light and pH on Photosynthesis, and of Light-dark Cycle on Growth Rate and Biomass of Scrippsiella trochoidea and Alexandrium tamarense[J]. Plant Science Journal, 2004, 22(2): 129-135.
    [9]XIA Jian-Rong, GAO Kun-Shan. Studies on Photosynthetic Inorganic Carbon Utilization of Ulothrix sp.[J]. Plant Science Journal, 2002, 20(5): 399-402.
    [10]LIU Ying-Di, ZHU Jie-Ying, CHEN Jun, CAO Tong. Relationships of Water Content to Photosynthesis, Respiration and Water Potential in Three Species of Mosses[J]. Plant Science Journal, 2001, 19(2): 135-142.
  • Cited by

    Periodical cited type(32)

    1. 胡菊,莫金凤,荣志能,梁振生,邓宏杰,莫云,梁芳. 不同生境下朱砂根形态、光合及叶绿素荧光特性分析. 四川林业科技. 2025(01): 97-104 .
    2. 周泽建,冯金朝. 走马胎灰分对光的响应特征及其与生长指标的相关性. 热带亚热带植物学报. 2024(01): 111-117 .
    3. 汪丽莎,徐德平,徐艳,李冬林. 遮光对桔梗幼苗生长及生理指标的影响. 特产研究. 2024(01): 81-85 .
    4. 陈超,金则新,袁梦,罗光宇,李月灵,单方权. 遮荫对景宁玉兰幼苗生理生化季节变化的影响. 浙江林业科技. 2024(02): 35-42 .
    5. 赵雪瑶,赵丹丹,张鸽香. 3种毛茛科地被植物对遮阴的生理响应及耐阴性评价. 草业科学. 2024(12): 2880-2890 .
    6. 许颖妍,林臻. 朱砂根组织培养研究进展. 特种经济动植物. 2023(01): 82-84 .
    7. 耿晓东,王菊秋,周英,钱剑林. 不同光照强度下3种萱草属植物的光合特性与叶绿素荧光特性. 分子植物育种. 2023(04): 1322-1329 .
    8. 阳桂平,秦佳双,马姜明. 广西资源县林下种植箬竹试验. 世界竹藤通讯. 2023(03): 40-44 .
    9. 赵财宝,陈苗苗,张光锰,艾星梅. 不同处理方式对黄果朱砂根顽拗性种子萌发的影响. 浙江农业科学. 2023(08): 1931-1934 .
    10. 赵盈盈,吴德涛,杨胜伟,汤建华,邓宽平,杨秀伟,杨选辉. 遵义地区野生朱砂根引种栽培试验. 现代农业科技. 2023(19): 73-76 .
    11. 赵财宝,王斌,潘曲波,王锦,艾星梅,孙媛媛. 朱砂根成熟果实不同部位生理特性与种子胎生的关系. 中国野生植物资源. 2023(10): 1-6 .
    12. 乔振升,李嘉其,冯家玉,张晓琳,纵丹,何承忠. 光质对三种蔬菜生长特性及品质的影响. 北方园艺. 2023(21): 8-14 .
    13. 廖柏林. 观赏用朱砂根种质资源圃营建技术规范. 现代园艺. 2023(24): 52-53+74 .
    14. 薛晴,陈斌,杨小梅,杨宇佳,李子葳,薄杉,何淼. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征. 草业学报. 2022(01): 69-80 .
    15. 卢庸,覃凌薇,李琳,王凌晖. 不同光照处理对赤苍藤光合生理和生化特性的影响. 广西林业科学. 2022(02): 223-228 .
    16. 张珊珊,袁春明. 土壤水分和光强对景东翅子树幼苗生长及光合特性的影响. 植物研究. 2022(03): 502-511 .
    17. 艾星梅,赵财宝,刘昕岑,谢欢,孙媛媛. 朱砂根和红凉伞花器官的形态补充描述. 热带作物学报. 2022(05): 1001-1009 .
    18. 贾雪晴,赵宗祥. 3种园林观赏植物对差异性光照强度的生理响应. 佛山科学技术学院学报(自然科学版). 2022(05): 75-80 .
    19. 马洪娜,吴依琳,檀龙颜. 钙离子胁迫对朱砂根叶片的影响. 山东化工. 2022(24): 148-150+153 .
    20. 潘月,张宪权,叶康,刘群录,秦俊. 不同八仙花品种对遮阴和强光处理的生理响应与评价. 福建农林大学学报(自然科学版). 2021(01): 36-48 .
    21. 程晶,刘济明,王灯,王姝,李丽霞,陈敬忠. 喀斯特特有植物罗甸小米核桃幼苗对光照强度的可塑性响应. 应用与环境生物学报. 2021(01): 23-30 .
    22. 熊静,虞木奎,成向荣,汪成,邹汉鲁. 光照和氮磷供应比对木荷生长及化学计量特征的影响. 生态学报. 2021(06): 2140-2150 .
    23. 骆丹,王春胜,曾杰. 西南桦幼林生长与枝条发育对光环境的响应. 华南农业大学学报. 2021(04): 83-88 .
    24. 张毅,姚红媛. 不同光照强度下园林景观设计图像优化研究. 激光杂志. 2021(09): 144-149 .
    25. 袁秀云,许申平,周一冉,王喜蒙,崔波. 遮荫对白及形态及叶片结构的影响. 植物研究. 2021(06): 974-981 .
    26. 郭品湘,尹婷,粟春青,亢亚超,王凌晖. 遮阴对双色木番茄幼苗生理特性的影响. 森林与环境学报. 2020(01): 76-82 .
    27. 蔡锡安,饶兴权,刘占锋,周清秋,周笛轩,牟之建,周丽霞. 遮荫处理对梅叶冬青叶片形态、光合特性和生长的影响. 热带亚热带植物学报. 2020(01): 25-34 .
    28. 杨秀玲,董妍君,亢亚超,王凌晖,滕维超. 小叶楠幼苗对不同施肥处理的生理响应. 广西林业科学. 2020(02): 197-203 .
    29. 谭婷婷,范元芳,李盛蓝,王仲林,杨峰,杨文钰. 套作模式下玉米荫蔽对大豆叶片叶绿体结构及光合特性的影响. 核农学报. 2020(10): 2360-2367 .
    30. 谢乔颖,王旭军,彭翠英,曹基武,左启可,梁其东,廖天柱. 遮阴对青牛胆生长与物质分配的影响. 湖南生态科学学报. 2020(04): 14-19 .
    31. 熊静,邢文黎,虞木奎,成向荣. 杉木人工林下原生与引入树种叶性状变异特征. 生态学报. 2019(06): 1897-1907 .
    32. 刘青青,黄智军,郭思,王大洋,王昌辉,马祥庆,刘博. 光质对杉木种子萌发及幼苗生长的影响. 生态学杂志. 2019(08): 2361-2368 .

    Other cited types(13)

Catalog

    Article views (1309) PDF downloads (1313) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return