Citation: | CHEN Yun, ZHEN Yong, LIU Xia, REN Yu, MA Liu-Feng. Overexpression of the Cotton CBF2 Gene Enhances Salt and Drought Tolerance in Arabidopsis thaliana[J]. Plant Science Journal, 2016, 34(6): 888-900. DOI: 10.11913/PSJ.2095-0837.2016.60888 |
[1] |
Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK. DREB1/CBF transcription factors:their structure, function and role in abiotic stress tolerance in plants[J]. J Genet, 2012, 91(3):385-395.
|
[2] |
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581.
|
[3] |
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2):86-96.
|
[4] |
Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, Chen X, Finer JJ, Shen QJ, Rushton PJ. WRKY transcription factors:key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1):2-11.
|
[5] |
Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana[STXFX]CBF1[STXFZ] encodes an AP2 domain-containing tran-scription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 94(3):1035-1040.
|
[6] |
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3):998-1009.
|
[7] |
Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol, 2002, 130(2):639-648.
|
[8] |
Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY. Dwarf apple [STXFX]MbDREB1[STXFZ] enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways[J]. Planta, 2011, 233(2):219-229.
|
[9] |
Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun, 2007, 353(2):299-305.
|
[10] |
Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Curr Opin, 2000, 3(3):217-223.
|
[11] |
Lee YP, Fleming AJ, Körner C, Meins FJ. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure[J]. Plant Biol (Stuttg), 2009, 11(3):273-283.
|
[12] |
Kim SY, Nam KH. Physiological roles of [STXFX]ERD10[STXFZ] in abiotic stresses and seed germination of Arabidopsis[J]. Plant Cell Rep, 2010, 29(2):203-209.
|
[13] |
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transpor-ter[J]. Biochim Biophys Acta, 1998, 1370(2):187-191.
|
[14] |
Li XJ, Li M, Zhou Y, Hu S, Hu R, Chen Y, Li XB. Overexpression of cotton [STXFX]RAV1[STXFZ] gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity[J]. PLoS One, 2015, 10(2):e0118056.
|
[15] |
Chen T, Li W, Hu X, Guo J, Liu A, Zhang B. A Cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress[J]. Plant Cell Physiol, 2015, 56(5):917-929.
|
[16] |
Ma LF, Zhang JM, Huang GQ, Li Y, Li XB, Zheng Y. Molecular characterization of cotton C-repeat/dehydration-responsive element binding factor genes that are involved in response to cold stress[J]. Mol Biol Rep, 2014, 41(7):4369-4379.
|
[17] |
Ma LF, Li Y, Chen Y, Li XB. Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene[J]. Plant Cell Tiss Organ Cult, 2016, 124:583-598.
|
[18] |
Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16:735-743.
|
[19] |
Sperdouli I, Moustakas M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress[J]. J Plant Physiol, 2012, 169(6):577-585.
|
[20] |
Wu LH, Zhou MQ, Shen C, Liang J, Lin J. Transgenic tobacco plants over expressing cold regulated protein CbCOR15b from Capsella bursa-pastoris exhibit enhanced cold tolerance[J]. J Plant Physiol, 2012, 169(14):1408-1416.
|
[21] |
Chen L,Wang QQ, Zhou L, Ren F, Li DD, Li XB. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA[J]. Mol Biol Rep, 2013, 40(8):4759-4767.
|
[22] |
Qin LX, Li Y, Li DD, Xu WL, Zheng Y, Li XB. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses[J]. Plant Mol Biol, 2014, 86(6):609-625.
|
[23] |
Qin LX, Li Y, Li DD, Xu WL, Zheng Y, Li XB. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses. Plant Mol Biol, 2014, 86(6):609-625.
|
[24] |
Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12):1263-1274.
|
[25] |
Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network[J]. Plant J, 2015, 82(2):193-207.
|
[26] |
Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway:a key responder to low temperature stress in plants[J]. Crit Rev Biotechnol, 2011, 31(2):186-189.
|
[27] |
Zandkarimi H, Ebadi A, Salami SA, Alizade H, Baisakh N. Analyzing the expression profile of AREB/ABF and DREB/CBF genes under drought and salinity stresses in Grape (Vitis vinifera L.)[J]. PLoS One, 2015, 10(7):e0134288.
|
[28] |
Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression[J]. Plant J, 2015, 81(3):505-518.
|
[29] |
Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ. Isolation and functional characterization of[STXFX]HvDREB1-a[STXFZ] gene encoding a dehydration-responsive element binding protein in Hordeum vulgare[J]. J Plant Res, 2009, 122(1):121-130.
|
[30] |
Prelich G. Gene overexpression:uses, mechanisms, and interpretation[J]. Genetics, 2012, 190(3):841-854.
|
[31] |
Lodeyro AF, Ceccoli RD, Pierella Karlusich JJ, Carrillo N. The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential[J]. FEBS Lett, 2012, 586(18):2917-2924.
|
[32] |
Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD. Roles of melatonin in abiotic stress resistance in plants[J]. J Exp Bot, 2015, 66(3):647-656.
|
[33] |
Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R. Lead stress effects on physiobiochemical activities of higher plants[J]. Rev Environ Contam Toxicol, 2008, 196:73-93.
|
[34] |
Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R. Overexpression of StDREB1 transcription factor increases tole-rance to salt in transgenic potato plants[J]. Mol Biotech-nol, 2013, 54(3):803-817.
|
[35] |
Hwang JE, Lim CJ, Chen H, JJ, Song C, Lim CO. Overexpression of Arabidopsis dehydration-responsive element-binding protein 2C confers tolerance to oxidative stress[J]. Mol Cells, 2012, 33(2):135-140.
|
[36] |
Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity:stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Rep, 2011, 30(8):1383-1391.
|