Citation: | XIAO Zhen, ZHAO Qi, ZHANG Chuan-Fang, WANG Xiao-Li, WANG Quan-Hua, DAI Shao-Jun. Abiotic Stress Response Mechanism of Oilseed Rape (Brassica napus L.) Revealed from Proteomics[J]. Plant Science Journal, 2016, 34(6): 949-961. DOI: 10.11913/PSJ.2095-0837.2016.60949 |
[1] |
李东霞, 石桃雄, 袁盼, 冯燕妮, 石磊. 甘蓝型油菜根系突变体lrn1、prl1和野生型根系显微结构的差异[J]. 植物科学学报, 2014, 32(4):406-412.
Li DX, Shi TX, Yuan P, Feng YN, Shi L. Differences in root microscopic structure of root mutantslrn1, prl1 and wild type in oilseed rape (Brassica napus L.)[J]. Plant Science Journal, 2014, 32(4):406-412.
|
[2] |
金美芳, 朱晓清. NaCl胁迫对油菜种子萌发和幼苗生长的影响[J]. 种子, 2009, 28(9):76-79.
Jin MF, Zhu XQ. Effects of NaCl stress on seed germination and seedling growth of Brassica rapa[J]. Seed, 2009, 28(9):76-79.
|
[3] |
刘国红, 姜超强, 刘兆普, 梁明祥, 殷祥贞, 郑青松. 盐胁迫对油菜幼苗生长和光合特征的影响[J]. 生态与农村环境学报, 2012, 28(2):157-164.
Liu GH, Jiang CQ, Liu ZP, Liang MX, Yin XZ, Zheng QS. Effects of salt Stress on growth and photosynthetic traits of canola seedlings[J]. Journal of Ecology and Rural Environment, 2012, 28(2):157-164.
|
[4] |
朱宗河, 郑文寅, 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价[J]. 中国农业科学, 2011, 44(9):1775-1787.
Zhu ZH, Zheng WY, Zhang XK. Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed(Brassica napus L.)[J]. Scientia Agricultura Sinica, 2011, 44(9):1775-1787.
|
[5] |
范志强. 低温胁迫下外源水杨酸对油菜叶片生理活性的影响[J]. 安徽农学通报, 2009, 15(24):17. Fan ZQ. Effects of salicylic acid on physiological activity of Brassica napus leaves under low-temperature stress[J]. Anhui Agricultural Science Bulletin, 2009, 15(24):17.
|
[6] |
徐进, 魏嵬, 韩璐, 官子楸, 郑宏春, 柴团耀. 重金属对油菜种子萌发和胚根生长的影响[J]. 西北植物学报, 2007, 27(11):2263-2268.
Xu J, Wei W, Han L, Guan ZQ, Zheng HC, Chai TY. Effects of heavy metal ions on seeds germination and radicle growth of Brassica napus[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11):2263-2268.
|
[7] |
Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199):950-953.
|
[8] |
张恒, 郑宝江, 宋保华, 王思宁, 戴绍军. 植物盐胁迫应答蛋白质组学分析[J]. 生态学报, 2011, 31(22):6936-6946.
Zhang H, Zheng BJ, Song BH, Wang SN, Dai SJ. Salt-responsive proteomics in plants[J]. Acta Ecologica Sinica, 2011, 31(22):6936-6946.
|
[9] |
Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S. Comparative proteomic analysis of canola leaves under salinity stress[J]. Proteomics, 2011, 11(10):1965-1975.
|
[10] |
Yıldız M, Akçalı N, Terzi H. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid[J]. J Plant Physiol, 2015, 179:90-99.
|
[11] |
Ismaili A, Salavati A, Mohammadi PP. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of canola (Brassica napus L.)[J]. Protein Peptide Lett, 2015, 22(3):285-299.
|
[12] |
Mohammadi PP, Moieni A, Komatsu S. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress[J]. Amino Acids, 2012, 43(5):2137-2152.
|
[13] |
Liang Y, Strelkov SE, Kav NNV. Oxalic acid-mediated stress responses in Brassica napus L.[J]. Proteomics, 2009, 9(11):3156-3173.
|
[14] |
Yao Y, Sun H, Xu FS, Zhang XJ, Liu SY. Comparative proteome analysis of metabolic changes by low phospho-rus stress in two Brassica napus genotypes[J]. Planta, 2011, 233(3):523-537.
|
[15] |
Chen S, Ding GD, Wang ZH, Cai HM, Xu FS. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress[J]. J Proteomics, 2015, 117:106-119.
|
[16] |
D'Hooghe P, Escamez S, Trouverie J, Avice JC. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms[J]. BMC Plant Biol, 2013, 13(1):23.
|
[17] |
D'Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice JC, Trouverie J. Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in sulphur-limited Brassica napus L.[J]. Mol Cell Proteomics, 2014, 13:1165-1183.
|
[18] |
Wang ZF, Wang ZH, Shi L, Wang LJ, Xu FS. Proteomic alterations of Brassica napus root in response to boron deficienc[J]. Plant Mol Biol, 2010, 74(3):265-278.
|
[19] |
Yang ZB. Small GTPases:versatile signaling switches in plants[J]. Plant Cell, 2002, 14(Suppl):S375-S388.
|
[20] |
Sang Y, Zheng SQ, Li WQ, Huang BR, Wang XM. Regulation of plant water loss by manipulating the expression of phospholipase Dα[J]. Plant J, 2001, 28(2):135-144.
|
[21] |
Roberts MR, Salinas J, Collinge DB. 14-3-3 proteins and the response to abiotic and biotic stress[J]. Plant Mol Biol, 2002, 50(6):1031-1039.
|
[22] |
Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB. Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain[J]. J Cereal Sci, 2009, 49(1):12-23.
|
[23] |
Yang F, Jensen JD, Svensson B, Jørgensen HJ, Collinge DB, Finnie C. Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett[J]. Proteomics, 2010, 10(21):3748-3755.
|
[24] |
Liu K, Li L, Luan S. An essential function of phosphatidylinositol phosphates in activation of plant shaker-type K+ channels[J]. Plant J, 2005, 42(3):433-443.
|
[25] |
Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Maeshima M. PCaPs, possible regulators of PtdInsP signals on plasma membrane[J]. Plant Signal Behav, 2010, 5(7):848-850.
|
[26] |
Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function:how and why[J]. Annu Rev Biophys, 2008, 37:175.
|
[27] |
Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat[J]. Mol Plant, 2010, 3(6):942-955.
|
[28] |
李超, 林茂, 肖华贵, 杨斌, 饶勇. 硼对油菜生长发育的影响[J]. 中国种业, 2008(S1):14-16.
Li C, Lin M, Xiao HG, Yang B, Rao Y. Effect of Bn-fertili-zer on rapeseed growth and development[J]. China Seed Industry, 2008(S1):14-16.
|
[29] |
张耀文, 李殿荣. 油菜硫营养及其与品质的关系[J]. 中国土壤与肥料, 2002(5):3-7.
Zhang YW, Li DR. The sulfur nutrition and the relationship between sulfur nutrition and quality of rape oil[J]. Soils and Fertilizers, 2002(5):3-7.
|
[30] |
王庆仁. 硫肥对双低油菜产量与品质的影响[J]. 植物营养与肥料学报, 1997(1):53-57.
Wang QR. Effect of sulfur application on yield and quality of canola double low oilseed rape[J]. Plant Nutrition and Fertilizer Science, 1997(1):53-57.
|
[31] |
袁兆国. 低磷胁迫对双低油菜产量与品质的影响[D]. 扬州:扬州大学, 2007. Yuan ZG. Responses of yield and quality to low-P stress and fertilizer application in a double-low oilseed rape[D]. Yangzhou:Yangzhou University, 2007.
|
[32] |
伊淑丽, 梁颖, 代柳亭, 谌利, 柴友荣, 李加纳. 高温对甘蓝型油菜籽粒后熟相关特性的影响[J]. 西南大学学报:自然科学版, 2008, 30(2):48-50.
Yi SL, Liang Y, Dai LT, Chen L, Chai YR, Li JN. Effects of high temperature on post-harvest ripening-related characteristics in Brassica napus L.[J]. Journal of Southwest University:Natural Science Edition, 2008, 30(2):48-50.
|
[33] |
Kruger NJ, von Schaewen A. The oxidative pentose phosphate pathway:structure and organisation[J]. Curr Opin Plant Biol, 2003, 6(3):236-246.
|
[34] |
Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance[J]. Plant Physiol, 2005, 138(3):1505-1515.
|
[35] |
马梅, 刘冉, 郑春芳, 刘伟成, 尹晓明, 刘金隆, 王长海, 郑青松. 油菜素内酯对盐渍下油菜幼苗生长的调控效应及其生理机制[J]. 生态学报, 2015, 35(6):1837-1844.
Ma M, Liu R, Zheng CF, Liu WC, Yin XM, Liu JL, Wang CH, Zheng QS. Regulation of exogenous brassino steroid on growth of salt-stressed canola seedlings and its physiological mechanism[J]. Acta Ecologica Sinica, 2015, 35(6):1837-1844.
|
[36] |
Grant CA. The fertilizer requirement of canola production[J]. Sci Food Agric, 1993,61(4):385-387.
|
[37] |
Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ. Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis[J]. Plant Physiol, 2002, 128(2):770-779.
|
[38] |
Pandey A, Chakraborty S, Datta A, Chakraborty N. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.)[J]. Mol Cell Proteomics, 2008, 7(1):88-107.
|
[39] |
Vogel J, Hübschmann T, Börner T, Hess WR. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids:support for MatK as an essential splice factor 1[J]. J Mol Biol, 1997, 270(2):179-187.
|
[40] |
Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci, 2006, 103(35):12987-12992.
|
[41] |
Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Mol Biol, 2007, 63(2):289-305.
|
[42] |
Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes[J]. New Phytol, 2011, 191(191):37-47.
|
[43] |
Hollender C, Liu Z. Histone deacetylase genes in Arabidopsis development[J]. J Integr Plant Biol, 2008, 50(7):875-885.
|
[44] |
Fedoroff NV. RNA-binding proteins in plants:the tip of an iceberg?[J]. Curr Opin Plant Biol, 2002, 5(5):452-459.
|
[45] |
Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inzé D, Engler G, Sachetto-Martins G. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development[J]. Planta, 2007, 225(6):1339-51.
|
[46] |
Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiol, 2004, 134(4):1683-1696.
|
[47] |
Mittler R. Abiotic stress, the field environment and stress combination[J]. Trends Plant Sci, 2006, 11(1):15-19.
|
[48] |
Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A[J]. Proc Natl Acad Sci, 2003, 100(24):13892-13897.
|
[49] |
Naora H, Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis:translational modulation or recruitment for extraribosomal activity?[J]. Immunol Cell Biol, 1999, 77(3):197-205.
|
[50] |
Szakonyi D, Byrne ME. Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana[J]. Plant J, 2011, 65(2):269-281.
|
[51] |
Parsell DA, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins[J]. Annu Rev Genet, 1993, 27(1):437-496.
|
[52] |
Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annu Rev Physiol, 1999, 61(1):243-282.
|
[53] |
Kregel KC. Invited Review:Heat shock proteins:modifying factors in physiological stress responses and acquired thermo tolerance[J]. J Appl Physiol, 2002, 92(5):2177-2186.
|
[54] |
Desai NS, Agarwal AA, Uplap SS. HSP:evolved and conserved proteins, structure and sequence studies[J]. Int J Bioin Res, 2010, 2(2):67-87.
|
[55] |
Vierling E. The roles of heat shock proteins in plants[J]. Annu Rev Plant Biol, 1991, 42(1):579-620.
|
[56] |
Lindquist S. The heat-shock response[J]. Annu Rev Biochem, 1986, 55(1):1151-1191.
|
[57] |
Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures a possible role in protecting against chilling injuries[J]. Plant Physiol, 1998, 117(2):651-658.
|
[58] |
Ferguson DL, Guikema JA, Paulsen GM. Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress[J]. Plant Physiol, 1990, 92(3):740-746.
|
[59] |
Haider A, Badr A, Gatehouse J, Hamoud M, Sammour R, Bouter D. Expression of Ubiquitin during late embryogenesis in pea (Pisurn sativum L.)[J]. Plant Physiol, 1995, 108(2):153-153.
|
[60] |
Young TE, Ling J, Geisler-Lee CJ, Tanguay RL, Caldwell C, Gallie DR. Developmental and thermal regulation of the maize heat shock protein, HSP101[J]. Plant Physiol, 2001, 127(3):777-791.
|
[61] |
Galat A, Metcalfe SM. Peptidylproline cis/trans isomera-ses[J]. Prog Biophys Mol Biol, 1995, 63(1):67-118.
|
[62] |
Whittier JE, Xiong Y, Rechsteiner MC, Squier TC. Hsp90 enhances degradation of oxidized calmodulin by the 20S proteasome[J]. J Biol Chem, 2004, 279(44):46135-46142.
|
[63] |
Grune T, Jung T, Merker K, Davies KJ. Decreased pro-teolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease[J]. Int J Biochem Cell Biol, 2004, 36(12):2519-2530.
|
[64] |
Asher G, Reuven N, Shaul Y. 20S proteasomes and protein degradation "by default"[J]. Bioessays, 2006, 28(8):844-849.
|
[65] |
Voss P, Grune T. The nuclear proteasome and the degradation of oxidatively damaged proteins[J]. Amino Acids, 2007, 32(4):527-534.
|
[66] |
Lingard MJ, Bartel B. Arabidopsis LON2 is necessary for peroxisomal function andsustained matrix protein import[J]. Plant Physiol, 2009, 151(3):1354-1365.
|
[67] |
Tsilibaris V, Maenhaut-Michel G, Van Melderen L. Biological roles of the Lon ATP-dependent protease[J]. Res Microbiol, 2006, 157(8):701-713.
|
[68] |
Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis[J]. Plant Cell, 2004, 16(6):1378-1391.
|
[69] |
Davies JM. Vacuolar energization:pumps, shunts and stress[J]. J Exp Bot, 1997, 48(3):633-641.
|
[70] |
Huber F, Schnauss J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton:from single filaments to tissue[J]. Adv Phys, 2013, 62(1):1-112.
|
[71] |
Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants[J]. Plant Cell, 1999, 11(3):431-443.
|
[72] |
Ort DR, Baker NR. A photoprotective role for O2 as an alternative electron sink in photosynthesis?[J]. Curr Opin Plant Biol, 2002, 5(3):193-198.
|
[73] |
Imlay JA. Pathways of oxidative damage[J]. Annu Rev Microbiol, 2003, 57(1):395-418.
|
[74] |
Parida AK, Das AB. Salt tolerance and salinity effects on plants:a review[J]. Ecotox Environ Safe, 2005, 60(3):324-349.
|
[75] |
娜荷雅. 高温对油菜、燕麦和大豆种子生理代谢及衰老的影响[D]. 呼和浩特:内蒙古农业大学, 2008.
Na HY. Effect of heat stress on the physiology and aging of three seeds[D]. Hohhot:Inner Mongolia Agricultural University, 2008.
|
[76] |
李玉琴, 赵丹丹, 余永芳, 牛银银, 杨冬之, 臧新. 磷胁迫对油菜幼苗Apase·POD·CAT活性的影响[J]. 安徽农业科学, 2011, 39(16):9548-9550.
Li YQ, Zhao DD, Yu YF, Niu YY, Yang DZ, Zang X. Effect of P stress on Apase, POD and CAT activities of rapeseed seedlings[J]. Journal of Anhui Agricultural Sciences, 2011, 39(16):9548-9550.
|
[77] |
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. J Exp Bot, 2002, 53(372):1331-1341.
|
[78] |
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants[J]. Trends Plant Sci, 2004, 9(10):490-498.
|
[79] |
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell and Environ, 2010, 33(4):453-467.
|
[80] |
Kristensen BK, Bloch H, Rasmussen SK. Barley coleoptile peroxidases. Purification, molecular cloning, and induction by pathogens[J]. Plant Physiol, 1999, 120(2):501-512.
|
[81] |
Passardi F, Penel C, Dunand C. Performing the paradoxical:how plant peroxidases modify the cell wall[J]. Trends Plant Sci, 2004, 9(11):534-540.
|
[82] |
Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis[J]. Plant Physiol, 2003, 131(1):317-325.
|
[83] |
Noctor G, Gomez L, Vanacker H, Foyer CH. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling[J]. J Exp Bot, 2002, 53(372):1283-1304.
|
[84] |
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes[J]. J Exp Bot, 2002, 53(372):1305-1319.
|
[85] |
Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell Environ, 2005, 28(8):1056-1071.
|
[86] |
Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases[J]. Genome Biol, 2002, 3(3):3004.1-3004.10.
|
[87] |
Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities[J]. Nat Struct Biol, 2000, 7(11):1036-1040.
|
[88] |
Lönnerdal B, Janson JC. Studies on myrosinases.Ⅱ[STXFZ]. Purification and characterization of a myrosinase from rapeseed (Brassica napus L.)[J]. BBA-Enzymol, 1973, 315(2):421-429.
|
[89] |
Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, Bak S. β-Glucosidases as detonators of plant chemical defense[J]. Phytochemistry, 2008, 69(9):1795-1813.
|
[90] |
Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Masuda T, Shimada H, Takamiya K, Tabata S, Ohta H. Genome-wide expression-monitoring of jasmonate-responsive genes of Arabidopsis using cDNA arrays[J]. Biochem Soc Trans, 2000, 28(6):863-864.
|
[91] |
Wasternack C, Hause B. Jasmonates and octadecanoids:signals in plant stress responses and development[J]. Prog Nucleic Acid Res Mol Biol, 2002, 72:165-221.
|
[92] |
Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J, Ourry A, Avice JC. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions[J]. Plant Physiol, 2008, 147(4):1830-1844.
|
[93] |
Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K, Le Dily F, Ourry A, Avice JC. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity[J]. Funct Plant Biol, 2007, 34(10):895-906.
|
[94] |
Damaraju S, Schlede S, Eckhardt U, Lokstein H, Grimm B. Functions of the water soluble chlorophyll-binding protein in plants[J]. J Plant Physiol, 2011, 168(12):1444-1451.
|
[95] |
Takahashi S, Yanai H, Nakamaru Y, Uchida A, Nakayama K, Satoh H. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble Chl-binding protein from brussels sprouts (Brassica oleracea var. gemmifera)[J]. Plant Cell Physiol, 2012, 53(5):879-891.
|
[96] |
Rey P, Pruvot G, Becuwe N, Eymery F, Rumeau D, Pel-tier G. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants[J]. Plant J, 1998, 13(1):97-108.
|
[97] |
Gillet B, Beyly A, Peltier G, Rey P. Molecular characte-rization of CDSP 34 a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants and regulation of CDSP 34 expression by ABA and high illumination[J]. Plant J, 1998, 16(2):257-262.
|
[1] | Lü Tian, Yue Weiying, Cai Mengmeng, Chang Jiang, He Dongli. Comparative proteomics analysis of developing buds in Brassica napus L.[J]. Plant Science Journal, 2024, 42(2): 201-210. DOI: 10.11913/PSJ.2095-0837.23153 |
[2] | Liu Yan-Li, Zhou Yuan, Cao Dan, Ma Lin-Long, Gong Zi-Ming, Jin Xiao-Fang. Application analysis of predictors for plant protein subcellular localization based on proteome data of Camellia sinensis (L.) O. Ktze.[J]. Plant Science Journal, 2020, 38(5): 671-677. DOI: 10.11913/PSJ.2095-0837.2020.50671 |
[3] | Qin Ai, Zheng Xiao-Min, Wang Kun. Research methods of plant proteomics based on mass spectrometry[J]. Plant Science Journal, 2018, 36(3): 470-478. DOI: 10.11913/PSJ.2095-0837.2018.30470 |
[4] | Li Fang, Teng Jian-Shai, Chen Xuan-Qin. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Science Journal, 2018, 36(3): 459-469. DOI: 10.11913/PSJ.2095-0837.2018.30459 |
[5] | Li Hong-You, Chen Qing-Fu. Advances on the role of heterotrimeric G proteins in plant abiotic stress responses[J]. Plant Science Journal, 2018, 36(1): 144-151. DOI: 10.11913/PSJ.2095-0837.2018.10144 |
[6] | He Yu-Qing, Cao Chun-Yan, Shen Wen-Zhong, Huang Dong, Ma Sheng, Wu Yan. Study on the ultrastructure and proteome of oil bodies in Brassica napus L.seeds[J]. Plant Science Journal, 2017, 35(4): 566-573. DOI: 10.11913/PSJ.2095-0837.2017.40566 |
[7] | DONG Chao, YANG Yun-Qiang, SUN Xu-Dong, LI Xiong, YANG Shi-Hai, HUANG Rong, YANG Yong-Ping. Molecular Cloning and Expression of ScTIP1;1 in Stipa capillacea under Abiotic Stress[J]. Plant Science Journal, 2016, 34(1): 99-108. DOI: 10.11913/PSJ.2095-0837.2016.10099 |
[8] | LIU Wei-Qun, SHI Yong-Chun, HU Ya-Jie, LIU Qiao-Zhen. The Tolerance to Abiotic Stresses Mediated by DREB-like Transcription Factors in Nicotiana tabacum[J]. Plant Science Journal, 2007, 25(3): 222-225. |
[9] | WEN Li, LIU Gai, WANG Kun, PENG Xiao-Jue, LI Guo-Ming, TAO Jun, ZHU Ying-Guo. Preliminary Analysis of the Total Proteins of HL Type Cytoplasmic Male Sterility Rice Pollen[J]. Plant Science Journal, 2007, 25(2): 112-117. |
[10] | CHANG Jun-Li, YANG Guang-Xiao, HE Guang-Yuan. Progress Regarding Techniques of Separation and Detection in Proteomics[J]. Plant Science Journal, 2006, 24(3): 261-266. |